Description
IS230SNCIH6A Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
In the formula, a is the design acceleration/deceleration value: s is the current actual position value of the elevator: V2 is the maximum speed of the elevator at this position.Considering that the lifting system needs to enter the parking track at a low crawling speed when entering the end of the stroke to avoid equipment damage caused by large mechanical impact, therefore, when there are still 1~5m away from the parking position, the lifting speed is limited to 0.5m/ below s.Since the instantaneous speed before parking is very low, the position accuracy of the system”s parking can be relatively improved, which is particularly important when the auxiliary shaft is lifted.2.2 Design and implementation of security protection functionsMines have particularly strict requirements on safety and reliability of hoist control systems [5]. While ensuring high reliability of electrical control equipment, the control system also sets up multiple protections in key links where failures may occur, and detects the actions and feedback signals of these protection devices in real time.First of all, monitoring the operating status of the elevator is the top priority in the safety protection function of the elevator control system. In the control system, the operating speed and position of the motor are monitored at all times, and the current position and speed values are compared with the system”s designed speed and position curve. Once it is found that the actual operating speed of the hoist exceeds the designed speed value, immediately Issue an emergency stop command and strictly ensure that the lifting speed is within the safe monitoring range during the entire lifting process. At the same time, position detection switches are arranged at several locations in the wellbore, and these position detection switches correspond to specific position values and corresponding speed values. When the elevator passes these switches, if it is found through encoder detection that the actual speed value and position deviate from the values corresponding to the position detection switch, the control system will also judge that it is in a fault state and immediately implement an emergency stop.In order to determine whether the encoder connected to the main shaft of the elevator drum is normal, two other encoders are installed on the elevator. In this way, the position and speed detection values of the three encoders are always compared. Once it is found that the deviation between the detection value of one encoder and the detection value of the other two encoders exceeds the allowable range, the control system will immediately consider it to have entered a fault state and implement an emergency stop. Protective action.3 ConclusionThe efficient and safe operation of main well equipment is an important guarantee for its function. In the application of mine hoist, the 800xA system designed speed curve, self-correction, various self-diagnosis and protection functions according to the specific process characteristics of the main shaft mine hoist, which has achieved good results in practical applications.
IS420UCSCS2A-B From General Electric in the United States
IS200TVBAH2ACC I/O excitation redundant module GE
IS200JPDSG1ACBGE From General Electric in the United States
IS220PDIIH1B GE power control board
DS200LDCCH1AGA GE power control board
IS200BLIGH1A Gas turbine system Mark VI
IS200ERRBG1A From General Electric in the United States
IS200DSPXH1D I/O excitation redundant module GE
IS200ERIOH1ACB From General Electric in the United States
IS200TBTCH1CBB High performance processor module GE
IS200DAMAG1B From General Electric in the United States
IS200VAICH1DAA From General Electric in the United States
IS200HFPAG2A I/O excitation redundant module GE
IS200RCSAG1ABB GE power control board
IS200TREGH1BDC Processor/Controller Mark VI System
IS210DTAIH1A Processor/Controller Mark VI System
IS230TNTRH1C Gas turbine system Mark VI
DS200TCEAG1BNE I/O excitation redundant module GE
IS200JPDDG1A Processor/Controller Mark VI System
IS200TRLYH1BGF GE power control board
DS200TCEAG1BTF High performance processor module GE
IS200TRLYH1C High performance processor module GE
IS210AEBIH1ADC From General Electric in the United States
IS200ESYSH3ABB Gas turbine system Mark VI
IS200HFPAG2ADC GE power control board
IS200BICRH1A GE power control board
IS220PRTDH1B Processor/Controller Mark VI System
DS200ACNAG1ADD High performance processor module GE
DS200TCRAG1ABB GE power control board
DS200SDCCG4AFD High performance processor module GE
DS200GDPAG1AKF High performance processor module GE
DS200TCCAG1BAA I/O excitation redundant module GE
DS215TCDAG1BZZ01A From General Electric in the United States
GDS1168-PFF-PA-NF Processor/Controller Mark VI System
IS210MACCH2AEG High performance processor module GE
IS200EGPAG1B Gas turbine system Mark VI
IS200SPROH1AAB Processor/Controller Mark VI System
DS200UPSAG1A Processor/Controller Mark VI System
DS200TBQCG1AAA High performance processor module GE
DS200SPCBG1ADC I/O excitation redundant module GE
DS200IIBDG1A High performance processor module GE
IS200TRLYS1BGG High performance processor module GE
IS215UCVFH2AB High performance processor module GE
DS200SDCCG5A GE power control board
IS210AEBIH3B Gas turbine system Mark VI
IS200DAMDG2A Processor/Controller Mark VI System
DS3820LT4AICIA From General Electric in the United States
IS400JPDHG1ABB Gas turbine system Mark VI
IS200VTCCH1CBC GE power control board
DS200TCDAH1B Processor/Controller Mark VI System
IS210AEACH1A I/O excitation redundant module GE
DS200LDCCH1AGA Processor/Controller Mark VI System
IS410TRLYS1F High performance processor module GE
IS220PRTDH1B High performance processor module GE
IS215SECAH1A I/O excitation redundant module GE
IS200TBTCH1C I/O excitation redundant module GE
DS200TCQCG1BKG Gas turbine system Mark VI
IS200BPVCG1B I/O excitation redundant module GE
IS210BPPBH2B From General Electric in the United States
IS200EPDMG1ABA I/O excitation redundant module GE
IS200STCIH6ADD Gas turbine system Mark VI
IS200VCRCH1BBB GE power control board
IS200BPIIH1AAA High performance processor module GE
IS420YDOAS1B Processor/Controller Mark VI System
IS210AEAAH1B GE power control board
DS200TCDAG1PR5A Processor/Controller Mark VI System
IS200DAMDG2AAA Processor/Controller Mark VI System
DS200SDCCG4AFD From General Electric in the United States
IS200ICBDH1ABB From General Electric in the United States
DS200ACNAG1ADD Processor/Controller Mark VI System