Description
IS410JPDEG1A Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Shandong”s policies are more specific. In addition to financial incentives, land supply, tax incentives, etc., it also mentions improving the first (set) of major technical equipment research and development and market promotion support policies, and accelerating independent innovation and industrialization of high-end products. Encourage provincial equity investment guidance funds to tilt towards the high-end equipment field, give full play to the leverage and amplification effect of fiscal funds, and attract and leverage social capital to increase investment.How can local governments effectively support high-end manufacturing?Analysts believe that when formulating development plans for high-end manufacturing, local governments must first conduct thorough research and research on the industry, find a development path that suits them, and formulate policies that suit the laws of industrial development. For example, Chongqing has a developed automobile industry, Shanghai has a strong industrial foundation in large aircraft, chips and robot manufacturing, and Shandong has a certain technical foundation in marine engineering equipment and rail transit equipment. We should leverage our strengths and avoid weaknesses and formulate policies based on local conditions.Second, local policies should not pursue automation and intelligence one-sidedly and support a number of face-saving projects that are blooming everywhere. For example, in the past two years, my country”s robot industrial parks have blossomed all over the country, and local governments have used subsidies and tax incentives to support a number of low-end, small and weak “intelligent manufacturing” robot industries.Third, local governments’ understanding of high-end manufacturing needs to be further deepened, and automation cannot simply be equated with high-end manufacturing. Local governments use subsidies to guide companies to purchase high-end automation equipment, but companies must also use good technology instead of expensive technology based on actual conditions. The case of Tesla’s over-reliance on automation causing a production capacity crisis should be taken seriously.Fourth, neither local governments nor enterprises can rely solely on buying and selling to promote high-end manufacturing. The government should guide and encourage technological innovation and seek long-term development.Generally speaking, enterprises should be closer to the market in terms of their own development and industry needs, and the government should create a policy environment more conducive to enterprise innovation, such as tax cuts, streamlining administration and delegating powers, etc., to help enterprises reduce costs as much as possible and give them the greatest benefits. Expansion capacity.
DS200TCDAG1BDB High performance processor module GE
IS200ISBBG2AAB High performance processor module GE
DS215KLDBG1AZZ03A I/O excitation redundant module GE
IS220PSVOH1A High performance processor module GE
IS200EPSMG1A Gas turbine system Mark VI
DS200SHCAG1BAA I/O excitation redundant module GE
IS200PSCDG1A From General Electric in the United States
IS215UCVDH2AK Gas turbine system Mark VI
IS200JPDMG1ADC GE power control board
DS200TCEAG1BSF Gas turbine system Mark VI
IS200TRLYH1B GE power control board
IS200EACFG2A GE power control board
IS200VSVOH1BDC Gas turbine system Mark VI
IS200TDBSH2AAA I/O excitation redundant module GE
IS210AEAAH1BBA I/O excitation redundant module GE
IS220PRTDH1A I/O excitation redundant module GE
DS200DDTBG2A GE power control board
IS200CPFPG1A Gas turbine system Mark VI
IS220PHRAH1B GE power control board
DS200PTBAG1ADC GE power control board
DS200TCDAG1B Processor/Controller Mark VI System
IS210SCSAS1A From General Electric in the United States
IS210AEAAH1B I/O excitation redundant module GE
IS220PSFDH1AG GE power control board
IS215GFOIH1A From General Electric in the United States
IS200VRTDH1BAB I/O excitation redundant module GE
IS200TRTDH1B High performance processor module GE
IS200EMIOH1AFB Gas turbine system Mark VI
IS200ERSCG2A From General Electric in the United States
IS200JPDLG1A I/O excitation redundant module GE
IS420ESWBH2A I/O excitation redundant module GE
IS23OSTTCH2A Gas turbine system Mark VI
IS200SCTLG1A Gas turbine system Mark VI
IS200TRPGH3B GE power control board
IS200DAMCG1 High performance processor module GE
IS200ECTBG1A Gas turbine system Mark VI
IS200SCTLG1ABA GE power control board
IS200JPDFG1A From General Electric in the United States
IS200ECTBG2A Processor/Controller Mark VI System
8201-HI-IS From General Electric in the United States
IS210MACCH1A High performance processor module GE
IS230TCISH6C I/O excitation redundant module GE
IS220PTCCH1A From General Electric in the United States
IS200DSPXH1DB Gas turbine system Mark VI
IS220PAICH2B High performance processor module GE
IS200TBACIH1B From General Electric in the United States
DS200TBQCG1AAA GE power control board
DS200IMCPG1CEB Gas turbine system Mark VI