Description
IS210AEBIH3B Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Nine Questions and Answers on Common Faults in ABB Industrial Robot ApplicationsQuestion 1: Under what circumstances do I need to back up my robot?Answer: 1. After the new machine is powered on for the first time.2. Before making any modifications.3. After completing the modification.4. If the robot is important, conduct it regularly once a week.5. It is best to make a backup on a USB flash drive.6. Delete old backups regularly to free up hard drive space.Second question: What does the alarm message 10106 maintenance time reminder mean when the robot appears?Answer: This is the intelligent periodic maintenance reminder of ABB robots.Question 3: What should I do if the robot enters a system failure state when it is powered on?Answer: 1. Restart the robot.2. If it doesn”t work, check whether there is a more detailed alarm prompt on the teaching pendant and handle it.3. Restart.4. If it still cannot be lifted, try B startup.5. If it still doesn’t work, try P startup.6. If it still doesn’t work, try I startup (this will return the robot to factory settings, be careful).Question 4: Can robot backup be shared by multiple robots?Answer: No, for example, the backup of robot A can only be used for robot A, not robots B or C, because this will cause system failure.Five questions: What files can be shared in the robot backup?Answer: If the two robots are of the same model and configuration. You can share RAPID programs and EIO files, but they must be verified before they can be used normally.Question 6: What is the mechanical origin of the robot? Where is the mechanical origin?Answer: The six servo motors of the robot have a unique fixed mechanical origin. Incorrectly setting the mechanical origin of the robot will cause problems such as limited movement or malfunction of the robot, the inability to walk in a straight line, etc., and serious damage to the robot.Question 7: How to cancel the robot 50204 motion monitoring alarm?Answer: 1. Modify the robot action monitoring parameters (control panel – action monitoring menu) to match the actual situation.2. Use the AccSet command to reduce the robot”s acceleration.3. Reduce the v_rot option in the speed data.Eight questions: What should I do if the robot alarms “50296, SMB memory data difference” when it is powered on for the first time?Answer: 1. Select calibration in the ABB main menu.2. Click ROB_1 to enter the calibration screen and select SMB memory.3. Select “Advanced” and click “Clear Control Cabinet Memory” after entering.4. Click “Close” when finished, then click “Update”.5. Select “The control cabinet or robot has been exchanged, and the control cabinet is updated using SMB memory data.”Question 9: How to customize the speed of robot trajectory in the RAPID program?Answer: 1. Select program data in the main menu of the teaching pendant.2. After finding the data type Speeddata, click New.3. Click on the initial value. The meanings of the four variables of Speeddata are: v_tcp represents the linear operating speed of the robot, v_rot represents the rotational operating speed of the robot, v_leax represents the linear operating speed of the additional axis, v_reax represents the rotational operating speed of the additional axis, if there is no additional axis, then No need to modify the two.4. The customized data can be called in the RAPID program.
IS210AEBIH3BED Processor/Controller Mark VI System
IS220UCSAH1A From General Electric in the United States
DS200TCDAH1BHD GE power control board
DS200PLIBG2ACA Gas turbine system Mark VI
IS200EBKPG1CAA High performance processor module GE
IS200STCIH6A Processor/Controller Mark VI System
IS200DSVOH2BDB From General Electric in the United States
IS200DAMAG1BBB I/O excitation redundant module GE
IS200ISBDG1A Processor/Controller Mark VI System
IS420UCSCH2A Processor/Controller Mark VI System
IS415UCVHH1A Gas turbine system Mark VI
IS2020JPDFG01 GE power control board
IS220PPRAS1A GE power control board
IS200EBPG1ACD Gas turbine system Mark VI
IS200SRTDH2ACB I/O excitation redundant module GE
IS200PSCDG1A Gas turbine system Mark VI
IS200EDEXG1A High performance processor module GE
IS420UCSBH4A Processor/Controller Mark VI System
IS220UCSAH1A I/O excitation redundant module GE
DS200QTBAG1ADC High performance processor module GE
IS420ESWBH1A Gas turbine system Mark VI
IS215VCMIH2C From General Electric in the United States
DS200TBQCG1ABB GE power control board
IS200PSCDG1ADB From General Electric in the United States
IS200SRLYH2A I/O excitation redundant module GE
IS420UCSCH1A Gas turbine system Mark VI
IS420UCSCH1A High performance processor module GE
IS220PHRAH1A High performance processor module GE
IS420UCSCH1A Processor/Controller Mark VI System
IS220UCSCH1A Gas turbine system Mark VI
IS420PPNGH1A Gas turbine system Mark VI
IS200SRTDH2A I/O excitation redundant module GE
IS220PTURH1A From General Electric in the United States
IS420PUAAH1A From General Electric in the United States
DS200SLCCG3A From General Electric in the United States
IS220PDIAH1A High performance processor module GE
IS200WETAH1AEC From General Electric in the United States
DS200NATOG2A Gas turbine system Mark VI
IS200STTCH2A High performance processor module GE
IS215PMVDH1A From General Electric in the United States
IS220PPDAH1A From General Electric in the United States
IS410TRLYS1F GE power control board
IS2020ISUCG GE power control board
IS215UCVEH2AE Gas turbine system Mark VI
DS200CTBAG1ACC I/O excitation redundant module GE
IS200TBCIH2CAA I/O excitation redundant module GE
IS2020LNPSG3A GE power control board
IS420ESWAH2A Processor/Controller Mark VI System
DS200TCEBG1ACD From General Electric in the United States
IS210AEACH1A Gas turbine system Mark VI
DS200DMCBG1AKG Processor/Controller Mark VI System
IS215UCVFH2BB From General Electric in the United States
IS420ESWBH2A Gas turbine system Mark VI
IS220PTURH1A Gas turbine system Mark VI
DS200TCPDG2B High performance processor module GE
IS400WROFH1A GE power control board
DS200DSPCH1ADA High performance processor module GE
DS3800HMPJ1B1D From General Electric in the United States
IS200TVBAH2ACC From General Electric in the United States
IS420YUAAS1A Gas turbine system Mark VI
IS215PMVPH1A GE power control board
IS200DSVOH2B High performance processor module GE
IS200RCSAG1 Gas turbine system Mark VI
IS200HFPAG1ADC GE power control board
IS200WROBH1A GE power control board
IS200VATFG1A From General Electric in the United States
DS200TCTGG1AFF I/O excitation redundant module GE
IS230SRTDH2A Processor/Controller Mark VI System
IS210AEBIH3BEC From General Electric in the United States
IS210SAMBH2AA GE power control board
IS210AEBIH3BEC Gas turbine system Mark VI
DS200EXPSG1ACB I/O excitation redundant module GE
DS200GLAAG1ACC From General Electric in the United States
DS215KLDBG1AZZ03A From General Electric in the United States
IS220PDIAH1BE GE power control board
IS200TPROH1C I/O excitation redundant module GE
IS220PTURH1B I/O excitation redundant module GE
DS215SDCCG1AZZ01A Processor/Controller Mark VI System
IS200IVFBG1AAA High performance processor module GE
IS200EROCH1A I/O excitation redundant module GE
DS200TCDAG1BDB From General Electric in the United States
IS215VPROH1A I/O excitation redundant module GE
IS200ICBDH1ACB From General Electric in the United States
IS200BPIBG1A Gas turbine system Mark VI
IS215UCVFH2AB From General Electric in the United States
DS200FCSAG1A I/O excitation redundant module GE
IS200DAMEG1ABA From General Electric in the United States
IS200VSVOH1BDC GE power control board
IS200TVBAH2A I/O excitation redundant module GE
DS200SHCBG1A High performance processor module GE
IS420ESWAH3 GE power control board
IS215WEPAH2BB GE power control board
IS200DSPXH1DBD GE power control board
IS215UCVEM09B From General Electric in the United States
DS200TCTGG1AFF Processor/Controller Mark VI System