Description
IS210AEBIH1ADC Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
ABB launches fully Chinese relay measurement and control deviceThe new generation IED670 series of relay protection and measurement and control devices pioneered by ABB fully complies with the IEC 61850 international standard and truly realizes the complete openness and interoperability between protection/measurement and control devices required in the field of comprehensive substation automation. This product Both hardware and software represent the highest standards in the industry. This series of products includes up to 5-side multi-terminal optical fiber phase split current differential protection, highly integrated transformer protection, and measurement and control devices that can control up to 30 electrical equipment. For the Chinese market, ABB plans to launch a fully localized IED670 series of relay protection and measurement and control devices in mid-2006, tailor-made standardized products according to the application requirements of different Chinese users, and provide fast, comprehensive and professional services.The ultimate goal is for AI to generate actual valueAlthough the popularity of artificial intelligence continues, people”s attention has gradually shifted from the surprises brought by new technologies to actual scene applications and implementation. Especially in the manufacturing field, new technologies that hope to move from the laboratory to the production workshop will inevitably undergo strict consideration by the enterprise in terms of input and output.Recently, at the 2019 Greater Bay Area Robotics and Artificial Intelligence Conference “Insights into the Development Trends and Applications of the Internet of Things Industry in the 5G and AI Era” sub-forum, well-known experts in the field of Internet of Things and AI at home and abroad and senior executives of cutting-edge technology companies expressed their opinions on the development of the Internet of Things industry . An in-depth discussion of trends and applications. At the forum, Alf Isaksson, global R&D manager of ABB Future Laboratory, gave a speech titled “Artificial Intelligence Makes Autonomous Industrial Systems Possible” and accepted an exclusive interview with Yiou New Manufacturing.Alf said in the interview that AI technology is another tool in the toolbox. Although it cannot solve all problems, it is indeed one of our most powerful tools.The only way to stay on top of the trend: adjust business models and change organizational structuresAs a company with a history of more than 130 years, ABB has always been forward-looking in its business, so it can always stay at the forefront of business competition. Going back to the 1880s, ABB”s predecessor, ASEA, started in the power industry.At the end of the 20th century, as Europe”s power production capacity became saturated, ASEA merged with another European electrical company, BBC (Brown, Boveri & Cie), to form today”s ABB (Asea Brown Boveri).In the past 30 years, ABB has gradually focused on the field of industrial production through the strategy of divesting original businesses and expanding advantageous businesses through mergers and acquisitions.ABB divested its broadcast transmission equipment, antenna and electronic tube businesses in 1993; from 1995 to 1998, it divested its railway sector whose profitability had declined; from 2019 to 2020, it will gradually divest itself of its power grid transmission business. You can get a glimpse of the transformational courage of a strong man who cut off his wrist.At the same time, ABB has used mergers and acquisitions to expand its robotics, automation and digital businesses, and has gradually become a pioneer in the field of manufacturing digitalization.Today, ABB has a team of more than 8,000 engineers and R&D laboratories located in more than ten countries and regions. This summer, the ABB Future Laboratory headed by Alf was established, located in Baden, Switzerland, Raleigh, the United States, and Beijing, China. Future laboratories will be more directly managed and funded by enterprises, focusing on disruptive technologies and innovations.
IS200VPROH2B Gas turbine system Mark VI
IS200EPSMG1ABB Gas turbine system Mark VI
IS2020ISUCG Gas turbine system Mark VI
IS215VCMIH2BZZ01A GE power control board
IS420PUAAH1AD Gas turbine system Mark VI
DS200QTBAG1ACB Gas turbine system Mark VI
DS3800HRCA1D1B Processor/Controller Mark VI System
IS410STCIS6A Processor/Controller Mark VI System
IS210SCLSH1A High performance processor module GE
IS200DTURH1ABA High performance processor module GE
IS200TRPAS1A Gas turbine system Mark VI
IS420YDOAS1B From General Electric in the United States
DS200DTBDG1 Processor/Controller Mark VI System
IS220PRTDH1A Processor/Controller Mark VI System
IS215PCMIH1A Processor/Controller Mark VI System
IS420ESWAH3A High performance processor module GE
IS210RERCH1RBB High performance processor module GE
DS200TBQBG1ACB I/O excitation redundant module GE
IS220YDOAS1AJ From General Electric in the United States
IS215UCVEH2A High performance processor module GE
DS200DMCBG1AJG From General Electric in the United States
IS200VAICH1C Gas turbine system Mark VI
DS200ADMAH1A Gas turbine system Mark VI
DS200DCFBG1BNC From General Electric in the United States
IS200HFPAG1 From General Electric in the United States
DS200TBCBG1AAA Gas turbine system Mark VI
IS215VCMIH2CA I/O excitation redundant module GE
DS200PLIBG1ACA From General Electric in the United States
IS200EPDMG1B Gas turbine system Mark VI
IS200ECTBG1ADE High performance processor module GE
IS430SNUAH1AC High performance processor module GE
DS200TCDAH1BHD Gas turbine system Mark VI
DS200TBQAG1ABB I/O excitation redundant module GE
IS200TSVOH1BBB High performance processor module GE
IS220PTURH1BF From General Electric in the United States
IS220YDOAS1AJ GE power control board
DS200TCPSG1A Processor/Controller Mark VI System
IS200EPDMG1ABA High performance processor module GE
IS200BPIHH1AAA Processor/Controller Mark VI System
IS215VPROH1B Processor/Controller Mark VI System
DS200PTCTG2BAA High performance processor module GE
IS415UCVGH1A I/O excitation redundant module GE
IS200TBCIH2B GE power control board
DS200TCDAG1B Gas turbine system Mark VI
IS200ICBDH1BAA From General Electric in the United States
IS420YDOAS1B GE power control board
IS200TVIBH2B From General Electric in the United States
IS215UCVEH2AF From General Electric in the United States
IS215PCMIH1A GE power control board
IS210BPPBH2CAA I/O excitation redundant module GE
IS220PPRFH1B From General Electric in the United States
DS200FCGDH1B GE power control board
IS200IVFBG1AAA From General Electric in the United States
IS210DRTDH1A High performance processor module GE
IS220PHRAH1BD Gas turbine system Mark VI
IS200DAMCG1A GE power control board
IS200ECTBG1A GE power control board
IS420ESWAH1A Processor/Controller Mark VI System
DS200TCCBG3BDC Processor/Controller Mark VI System
IS200TDBTH6ABC Processor/Controller Mark VI System
IS200VCRCH1B GE power control board
IS230SNIDH1A From General Electric in the United States
IS200BICRH1A From General Electric in the United States
DS200RTBAG1AHC From General Electric in the United States
IS200DSPXH2DBD Gas turbine system Mark VI
IS410STCIS2A Gas turbine system Mark VI
DS200TBQCG1A I/O excitation redundant module GE
IS200TSVCH2AED I/O excitation redundant module GE
IS200EPDMG1B High performance processor module GE
DS200DCFBG1B Gas turbine system Mark VI
IS200VCRCH1BBB Gas turbine system Mark VI
DS200TCQAG1AFD I/O excitation redundant module GE
DS200ITXDG1ABA High performance processor module GE
IS210AEBIH3BED GE power control board
IS210AEAAH1B Processor/Controller Mark VI System
IS200VTURH2BAC From General Electric in the United States
IS420ESWBH3AX Gas turbine system Mark VI
IS200ERRBG1ABA GE power control board
IS420UCSBH4A From General Electric in the United States
DS215KLDCG1AZZ03A Processor/Controller Mark VI System
IS200PRTDH1A I/O excitation redundant module GE
DS200PTBAG1BAA From General Electric in the United States
IS2020RKPSG2A High performance processor module GE
IS200EGPAG1A I/O excitation redundant module GE
IS200STAOH2AAA From General Electric in the United States
IS200DSVOH1ABA I/O excitation redundant module GE
IS200TBCIH2C I/O excitation redundant module GE
DS200DTBCG1AAA Gas turbine system Mark VI
IS220PDIAH1B From General Electric in the United States
IS210AEDBH4AGD GE power control board
DS200TCEBG1ACE Gas turbine system Mark VI