Description
IS200VGENH1B Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
How important ultra-precision polishing process is in modern manufacturing industry, its application fields can directly illustrate the problem: integrated circuit manufacturing, medical equipment, auto parts, digital accessories, precision molds, aerospace. “It is the soul of technology.” The United States and Japan have firmly grasped the initiative in the global market, and their material composition and production process have always been a mystery. In other words, purchasing and using their products does not mean that you can imitate or even copy their products.Epoxy Resin 25″Epoxy resin has insufficient toughness, and domestic carbon fiber lacks strength” (Science and Technology Daily, June 27)Carbon fiber can be lighter than metal aluminum, but its strength is higher than steel. It also has properties such as high temperature resistance, corrosion resistance, fatigue resistance, and creep resistance. One of the key composite auxiliary materials is epoxy resin. However, all the epoxy resin used in the high-end carbon fiber currently produced in China is imported. At present, my country is able to produce higher-end carbon fibers such as T800, but Japan”s Toray mastered this technology in the 1990s. Compared with carbon fiber, my country”s high-end epoxy resin industry lags behind the international situation even more seriously.High-strength stainless steel 26 “The rocket engine “rust disease” that cannot be removed” (Science and Technology Daily, June 28)Steel used in rocket engines needs to have a variety of properties, among which high strength is an important indicator that must be met. However, the strength and rust-proof performance of stainless steel are a contradiction that is difficult to have both. If the rocket engine material is severely rusted, it will have a great impact. Relying entirely on the material itself to achieve both high strength and anti-rust properties is a worldwide problem. Nowadays, most of our country”s aerospace materials use foreign materials used in the 1960s and 1970s. Developed countries will strictly control the impurity content during the production process. If the purity does not meet the standard, it will be re-sold. However, domestic manufacturers often lack this rigorous control. manner.
DS200SDCCG1AGD I/O excitation redundant module GE
IS230SNIDH1A GE power control board
IS2020ISUCG1A Processor/Controller Mark VI System
IS200IGEHG1A GE power control board
DS200DTBBG1ABB High performance processor module GE
DS200TCPSG1ARE Processor/Controller Mark VI System
IS200ESELH1A Processor/Controller Mark VI System
DS200PCCAG5A From General Electric in the United States
IS410JPDSG1A Gas turbine system Mark VI
IS420UCSCS2A Gas turbine system Mark VI
DS200LDCCH1A Gas turbine system Mark VI
IS220PAICH1B GE power control board
IS200TRLYH1BGF From General Electric in the United States
DS200DCFBG1B High performance processor module GE
IS210MVRCH1A From General Electric in the United States
IS200TSVCH1A GE power control board
DS200TCCBG8B GE power control board
IS200JPDSG1ACBGE Gas turbine system Mark VI
IS210AEPSG2BBA High performance processor module GE
DS200DCFBG1B Processor/Controller Mark VI System
IS230TNCIH4C I/O excitation redundant module GE
IS200EGPAG1B High performance processor module GE
IS220PAICH1B Gas turbine system Mark VI
GE DS200EXPSG1A From General Electric in the United States
IS200ISBDG1AAA Gas turbine system Mark VI
IS200TVIBH2BBB Gas turbine system Mark VI
DS200DCFBG1A GE power control board
IS215VPROH2B High performance processor module GE
IS200FOSBH1A High performance processor module GE
DS200EXPSG1ACB Gas turbine system Mark VI
DS200TCTGG1AFF Gas turbine system Mark VI
DS200FCSAG2A Gas turbine system Mark VI
IS420UCSCS2A-B I/O excitation redundant module GE
DS200TCEAG1BSF Processor/Controller Mark VI System
IS200TDBTH6A Gas turbine system Mark VI
IS215VPROH1BD Gas turbine system Mark VI
DS200SLCCG2A GE power control board
IS220PDIOH1A From General Electric in the United States
DS200DSFBG1ACB High performance processor module GE
IS200DAMCG1A Processor/Controller Mark VI System
IS200SCNVG1A Processor/Controller Mark VI System
IS420UCSCS2A High performance processor module GE
IS220PAICH1A GE power control board
IS210AEPSG1B I/O excitation redundant module GE
IS200DSFCG1A I/O excitation redundant module GE
IS215UCVEM09B Gas turbine system Mark VI
IS200CABPG1BAA Processor/Controller Mark VI System
IS230SNRTH2A GE power control board
8201-HI-IS GE power control board
IS200VAOCH1B From General Electric in the United States
IS200GGXDG1A Processor/Controller Mark VI System
DS200RCTBG1ABA GE power control board
IS420PPNGH1A From General Electric in the United States
IS2020RKPSG3A High performance processor module GE
IS200EPDMG1BAA From General Electric in the United States
IS220PAICH2A I/O excitation redundant module GE
IS215AEPCH1FA Processor/Controller Mark VI System
IS220PSCAH1A From General Electric in the United States
IS400JPDDG1A Processor/Controller Mark VI System
IS420ESWBH1A High performance processor module GE
IS200BICLH1BBA Gas turbine system Mark VI
IS200VATFG1A I/O excitation redundant module GE
IS220PPROH1A GE power control board
IS210AEPSG1A I/O excitation redundant module GE
DS200TCRAG1ABB High performance processor module GE
DS215KLDBG1AZZ03A Processor/Controller Mark VI System
DS200TCRAG1A Gas turbine system Mark VI
IS200TDBSH2ABC From General Electric in the United States
IS210TRPGH1B I/O excitation redundant module GE
IS200RAPAG1B From General Electric in the United States
DS200ACNAG1A I/O excitation redundant module GE
DS200FCRLG1A From General Electric in the United States
DS200SLCCG2A Processor/Controller Mark VI System
DS200TCQCG1BHF Gas turbine system Mark VI
IS200SRLYH2AAA Gas turbine system Mark VI
IS230SNCIH6A From General Electric in the United States
IS200VA1CH1D GE power control board
IS200SSCAH2AGD GE power control board
IS200EGPAG1B From General Electric in the United States
IS210BAPAH1A Gas turbine system Mark VI
IS220PDIAH1B Processor/Controller Mark VI System
IS200EROCH1AED Processor/Controller Mark VI System
IS200TVBAH2A From General Electric in the United States
DS200SDCCG5AHD High performance processor module GE
IS400WPDFH1A GE power control board
IS200TRLYH2C High performance processor module GE
DS200VPBLG1A GE power control board
IS200ERIOH1ACB I/O excitation redundant module GE
IS200TPROH1BCB GE power control board
IS200VSVOH1B High performance processor module GE
DS200TCPDG1BDC From General Electric in the United States