Description
IS200TRPGH2B Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Shandong”s policies are more specific. In addition to financial incentives, land supply, tax incentives, etc., it also mentions improving the first (set) of major technical equipment research and development and market promotion support policies, and accelerating independent innovation and industrialization of high-end products. Encourage provincial equity investment guidance funds to tilt towards the high-end equipment field, give full play to the leverage and amplification effect of fiscal funds, and attract and leverage social capital to increase investment.How can local governments effectively support high-end manufacturing?Analysts believe that when formulating development plans for high-end manufacturing, local governments must first conduct thorough research and research on the industry, find a development path that suits them, and formulate policies that suit the laws of industrial development. For example, Chongqing has a developed automobile industry, Shanghai has a strong industrial foundation in large aircraft, chips and robot manufacturing, and Shandong has a certain technical foundation in marine engineering equipment and rail transit equipment. We should leverage our strengths and avoid weaknesses and formulate policies based on local conditions.Second, local policies should not pursue automation and intelligence one-sidedly and support a number of face-saving projects that are blooming everywhere. For example, in the past two years, my country”s robot industrial parks have blossomed all over the country, and local governments have used subsidies and tax incentives to support a number of low-end, small and weak “intelligent manufacturing” robot industries.Third, local governments’ understanding of high-end manufacturing needs to be further deepened, and automation cannot simply be equated with high-end manufacturing. Local governments use subsidies to guide companies to purchase high-end automation equipment, but companies must also use good technology instead of expensive technology based on actual conditions. The case of Tesla’s over-reliance on automation causing a production capacity crisis should be taken seriously.Fourth, neither local governments nor enterprises can rely solely on buying and selling to promote high-end manufacturing. The government should guide and encourage technological innovation and seek long-term development.Generally speaking, enterprises should be closer to the market in terms of their own development and industry needs, and the government should create a policy environment more conducive to enterprise innovation, such as tax cuts, streamlining administration and delegating powers, etc., to help enterprises reduce costs as much as possible and give them the greatest benefits. Expansion capacity.
IS200VSVOH1B From General Electric in the United States
IS230TVBAH4A High performance processor module GE
IS210AEBIH1BAA GE power control board
IS200VRTDH1DAC From General Electric in the United States
IS200TSVCH2ADC Gas turbine system Mark VI
DS200LRPAG1AAA Gas turbine system Mark VI
DS215TCQAG1BZZ01A I/O excitation redundant module GE
DS200DCFBG1BLC I/O excitation redundant module GE
IS210BPPCH1AC Processor/Controller Mark VI System
IS210AEBIH1BED From General Electric in the United States
IS200ISBEH2ABB GE power control board
IS200VPWRH1AF GE power control board
IS200ERRRH1A Gas turbine system Mark VI
IS200VTCCH1CBB High performance processor module GE
IS200TBACIH1B Gas turbine system Mark VI
IS200VTCCH1CBB GE power control board
IS200RCSBG1BAA From General Electric in the United States
IS200ICIAH1ABB From General Electric in the United States
IS200TREGH1B GE power control board
IS215UCVEH2A Processor/Controller Mark VI System
IS200ISBBG2AAB Processor/Controller Mark VI System
IS200TREGH1BDB Gas turbine system Mark VI
IS220PVIBH1A I/O excitation redundant module GE
DS200CTBAG1ACC From General Electric in the United States
IS200BPIAG1AEB From General Electric in the United States
IS200ERRBG1A High performance processor module GE
IS200VSVOH1BDC I/O excitation redundant module GE
DS200TCCAG1BAA GE power control board
DS200TCTGG1AFF GE power control board
IS200EXHSG3AEC High performance processor module GE
IS200TPROS1CBB High performance processor module GE
IS200EXAMG1A Gas turbine system Mark VI
IS220PDOAH1B I/O excitation redundant module GE
IS200WETBH1BAA GE power control board
IS200VCMIH1BCC Processor/Controller Mark VI System
DS200UCPBG6AFB Processor/Controller Mark VI System
IS200TRLYH2C I/O excitation redundant module GE
DS200TCQAG1BEC Processor/Controller Mark VI System
IS215SUCVEH2AE Gas turbine system Mark VI
IS230TBAIH2C High performance processor module GE
IS200ECTBG1ADE I/O excitation redundant module GE
IS200JPDPG1A GE power control board
IS200TBCIH1BBC High performance processor module GE
IS200TREGH1BDC I/O excitation redundant module GE
IS215UCVEM09A Gas turbine system Mark VI
IS200BICIH1ADB Processor/Controller Mark VI System
IS215ACLEH1A High performance processor module GE
IS200SAMBH1A Gas turbine system Mark VI
IS200TREGH1B I/O excitation redundant module GE
IS220PTCCHIA Processor/Controller Mark VI System
IS215PCMIH1AC Gas turbine system Mark VI
IS220PTURH1A GE power control board