Description
IS200TREGH1A Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
[Introduction] China”s industrial robots started in the early 1970s. After more than 20 years of development, they have roughly gone through three stages: the embryonic period in the 1970s, the development period in the 1980s, and the applicability period in the 1990s.In recent years, the global robot industry has entered a stage of rapid development. In fields such as catering, public services, logistics and transportation, more and more robots are involved. At the same time, the research and development process of commercial robots is also accelerating. In particular, the outbreak of the COVID-19 epidemic has promoted the rapid development of robot applications.China”s industrial robots started in the early 1970s. After more than 20 years of development, they have roughly gone through three stages: the embryonic period in the 1970s, the development period in the 1980s, and the applicability period in the 1990s.The 1970s was a milestone in the development of world science and technology: humans landed on the moon and achieved soft landings on Venus and Mars. Our country has also launched artificial satellites. The application of industrial robots has set off a climax in the world, especially in Japan, which is developing more rapidly. It supplements the increasingly scarce labor force. Against this background, my country began to develop its own industrial robots in 1972.After entering the 1980s, under the impact of the high-tech wave and with the deepening of reform and opening up, the development and research of robotics technology in our country received government attention and support. During the “Seventh Five-Year Plan” period, the state invested funds to research industrial robots and their parts, completed the development of a complete set of teaching and reproducible industrial robot technologies, and developed spraying, spot welding, arc welding and handling robots. In 1986, the National High-tech Research and Development Plan (863 Plan) was implemented. The theme of intelligent robots followed the forefront of world robotics technology. After several years of research, a large number of scientific research results were achieved and a number of special robots were successfully developed.
IS200ERBPG1A High performance processor module GE
IS200ESYSH3A Gas turbine system Mark VI
IS215ISBBH1A I/O excitation redundant module GE
DS200DSFBG1ACB Gas turbine system Mark VI
IS200DTAIH1ACC Processor/Controller Mark VI System
IS200VPWRH1A GE power control board
IS200JPDPG1A Processor/Controller Mark VI System
DS200DCFBG1BNC GE power control board
IS200XDIAG1A High performance processor module GE
IS210AEPSG2BBA Gas turbine system Mark VI
DS200FGPAG1A Processor/Controller Mark VI System
DS200PCCAG6ACB High performance processor module GE
IS200TRLYH1B Gas turbine system Mark VI
IS215VCMIH2CA Processor/Controller Mark VI System
IS215VCMIH1B GE power control board
IS200VCMIH1BCC High performance processor module GE
IS200TTURH1CED Gas turbine system Mark VI
DS200SDCCG4A I/O excitation redundant module GE
IS420YAICS1B Processor/Controller Mark VI System
IS200JPDSG1ACBGE I/O excitation redundant module GE
IS420ESWAH1A Gas turbine system Mark VI
IS200ICBDH1BAA Processor/Controller Mark VI System
IS200AVGBG1A Gas turbine system Mark VI
IS215ACLEH1BC GE power control board
IS230SNAIH4A GE power control board
IS200VTCCH1CBD Gas turbine system Mark VI
IS200TBAIH1CDC GE power control board
IS200ADIIH1A From General Electric in the United States
IS420PVIBH1B From General Electric in the United States
IS200ACLEH1BCB Gas turbine system Mark VI
IS200TREGH1B Processor/Controller Mark VI System
IS420UCPAH1A Gas turbine system Mark VI
IS200CPFPG1A High performance processor module GE
DS200FGPAG1AHD High performance processor module GE
DS200SLCCG1ABB I/O excitation redundant module GE
IS220PSVOH1A Processor/Controller Mark VI System
IS215GBIAH1A GE power control board
IS200TRPSH1A GE power control board
DS200TCTGG1AFF From General Electric in the United States
IS200EPSMG2A High performance processor module GE
IS200SAMBH1A Processor/Controller Mark VI System
IS420UCSCS2A GE power control board
IS200DTURH1ACC Processor/Controller Mark VI System
IS200DSFCG1A High performance processor module GE
IS200ERIOH1AAA GE power control board
IS200GGXDG1AA Gas turbine system Mark VI
IS200AEPAH1BCA I/O excitation redundant module GE
IS200RAPAG1BAA GE power control board
IS220YSILS1BB High performance processor module GE
IS220PTURH1A High performance processor module GE
DS200DCFBG1BLC High performance processor module GE
DS200TCPDG1B GE power control board
DS200ADMAH1A GE power control board