Description
DS200ADPAG1ABB Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Orders from Europe fell 2% (6% in U.S. dollars). Markets including Sweden and Italy remained stable. Compared with the same period last year, orders increased from France, the United Kingdom and Spain, while orders fell in Switzerland, Finland and Norway. In Germany, orders fell 1% (down 5% in US dollar terms). Orders from the Americas were down 1% (down 1% in U.S. dollar terms), with orders from Canada developing well, but performance elsewhere was mixed. Orders from the United States fell 1% (or 1% in U.S. dollar terms).In Asia, the Middle East and Africa (AMEA), orders increased 1% (down 3% in US dollar terms). Orders from China and South Korea were lower, but orders from India, Japan, Singapore and the United Arab Emirates grew well. In China, orders fell 5% (USD declined 7%).3.4. KUKA Q3 robot business situationKUKA’s Q3 revenue fell 2% year-on-year to 832.9 million euros, and order volume was 624.8 million euros, a 16.7% decrease from the same period in 2018. Automobiles and 3C electronics have had a huge impact on KUKA’s robot orders. Robot business orders totaled 215.4 million euros, down 27.5% from last year.The total orders for KUKA’s China business segment in Q3 were 55.9 million euros. This corresponds to a significant decrease in value of 34.6% compared to the previous year (Q3/18: €85.5 million). In China, trade policy issues and uncertainty about global economic development have adversely affected customer orders, particularly in the automotive and electronics industries. Sales revenue fell from 159.2 million euros to 154.1 million euros, a decrease of 3.2%.Affected by the slowdown in global economic growth, KUKA”s growth in the Chinese market has also been affected. In the first nine months of 2019, KUKA’s total orders in the Chinese market were 367.9 million euros, a decrease of 17.0% compared with the same period last year. The potential remains high, but due to lower demand due to the current economic situation, sales revenue fell by 3.0% in the first nine months of 2019 to 381.8 million euros, compared with 393.5 million euros in the same period last year. The order backlog dropped from 329.7 million euros on September 30, 2018 to 230.6 million euros on September 30, 2019.4. Industrial capacity utilization has gradually stabilized, and the revenue of some listed robot companies has bottomed out.Benefiting from the upgrading of my country”s manufacturing industry, the industrial robot sub-sector grew rapidly from 2016 to 2017; however, since 2018, the year-on-year growth rate of industrial robot output has declined, and the single-month growth rate of output from January to September 2019 was negative, although in October and Production in November increased by 1.70% and 4.3% year-on-year, but the absolute value was not large. However, this also indicates that the industrial robot industry”s single-month growth rate decline trend has reversed, and it is expected that the probability of the industry”s growth rate bottoming out throughout the year will increase.According to data from the National Bureau of Statistics, the output of industrial robots in October 2019 was 14,369 units, a year-on-year increase of 1.7%. The output of industrial robots in November 2019 was 16,080 units, a year-on-year increase of 4.3%. It has experienced negative growth for two consecutive months. Growth rate turned positive. As of November 2019, the cumulative output of industrial robots was 166,594 units, a year-on-year decrease of 5.3%. Judging from historical data, China”s industrial robots have experienced rapid growth, especially from 2010 to 2017. In mid-2018, the industry”s growth rate began to decline due to the impact of the trade war, and it is expected to decline slightly throughout 2019.Industrial robots belong to the general equipment manufacturing industry, and demand is affected by manufacturing investment. Track selection is a key factor in industrial development. Traditional manufacturing investments mostly focus on expanding factories and purchasing new equipment to expand production capacity. The main result is expansion of scale. However, due to the excessive new production capacity added by enterprises in the last round of investment cycle, some industries have not yet been able to fully absorb the new production capacity in the previous period. In this round of capital expansion cycle, the investment focus of enterprises is on the automation upgrade of existing equipment to improve efficiency. The industrial robot industry has risen along with the industrial upgrading cycle. From January to October 2019, manufacturing investment increased by 2.6% year-on-year, and manufacturing investment continued to grow steadily.The manufacturing PMI returned to the expansion range in November , and the industrial capacity utilization rate gradually stabilized. In November 2019, the manufacturing PMI returned to the expansion range after being below the boom-bust line for six consecutive months, with both manufacturing production and domestic demand improving. From the production side, the production index rebounded to 52.6 in November from 50.8 in October. After excluding the seasonal factors that delayed production activities during the National Day holiday, the improvement in the production index was also significantly better than the same period in previous years. The production side showed signs of recovery. . From the perspective of domestic demand, the new orders index in November rose by 1.7 to 51.3 from 49.6 in October. Domestic demand improved significantly.
DS200TCQAG1A High performance processor module GE
IS2020RKPSG From General Electric in the United States
IS215WEPAH2BA Gas turbine system Mark VI
IS210AEBIH1B From General Electric in the United States
IS400TCASH1AEC GE power control board
IS220PPRFH1A Gas turbine system Mark VI
IS200RCSAG1ABB Gas turbine system Mark VI
IS200JPDMG1A Gas turbine system Mark VI
DS2020FEXAG4 GE power control board
IS410TRLYS2F Processor/Controller Mark VI System
IS200ERIOH1ACB GE power control board
DS200DSPCH1ADA GE power control board
IS215UCCAM03A I/O excitation redundant module GE
IS230STCIH6A Gas turbine system Mark VI
IS200EPCTG1A From General Electric in the United States
IS200TTPWH1A I/O excitation redundant module GE
IS200SSCAH2AGD High performance processor module GE
DS200RTBAG2AGL High performance processor module GE
IS220PDIOH1B GE power control board
IS200TVIBH2BCC GE power control board
IS200ICIAH1ABB Processor/Controller Mark VI System
IS200EISBH1A GE power control board
IS400AEBMH1AJD Gas turbine system Mark VI
IS200TDBSH2AAA Gas turbine system Mark VI
IS215UCVEH2AB From General Electric in the United States
DS200KLDBG1ABC Gas turbine system Mark VI
IS200TSVCH2AED Gas turbine system Mark VI
IS210AEBIH1BED Processor/Controller Mark VI System
IS230STAIH2A Processor/Controller Mark VI System
DS200SLCCG3A Processor/Controller Mark VI System
DS200FCGDH1BBA High performance processor module GE
DS200RTBAG3A From General Electric in the United States
IS200TNH1A From General Electric in the United States
IS200DSPXH1DBD From General Electric in the United States
IS220PVIBH1A Processor/Controller Mark VI System
IS200STCIH2A From General Electric in the United States
IS420UCSBH4A I/O excitation redundant module GE
IS215UCVEM09A I/O excitation redundant module GE
IS420USBH1A From General Electric in the United States
IS200EPDMG1ABA Gas turbine system Mark VI
IS215VCMIH2CC Processor/Controller Mark VI System
IS200ERIOH1AAA I/O excitation redundant module GE
DS200QTBAG1ADC Gas turbine system Mark VI
IS200EAUXH1A High performance processor module GE
IS210AEDBH4A Gas turbine system Mark VI
IS215VPROH1BD From General Electric in the United States
IS200ACLEH1A From General Electric in the United States
IS200TBA1H1C GE power control board
DS3800HRCA1D1B GE power control board
IS200TVBAH2ACC Processor/Controller Mark VI System
DS3800HFXA1D1B High performance processor module GE
IS415UCVGH1A Gas turbine system Mark VI
IS410JPDHG1A Gas turbine system Mark VI
IS400WPDFH1A From General Electric in the United States
IS220PDIOH1B Gas turbine system Mark VI
IS200BPIHH1A High performance processor module GE
DS200TCEBG1ACD GE power control board
DS3800DFXA1B1C From General Electric in the United States
IS210AEBIH3BED I/O excitation redundant module GE
IS200TRTDH1B Gas turbine system Mark VI
IS215PCMIH1A High performance processor module GE
IS220PPRFH1B Gas turbine system Mark VI
IS420UCECH1B High performance processor module GE
DS200FCRRG1A From General Electric in the United States
DS200SDCCG1AHD I/O excitation redundant module GE
IS210MVRAH2A Gas turbine system Mark VI
IS200EXHSG1A GE power control board
IS220PHRAH1BD GE power control board
IS200IGPAG2AED From General Electric in the United States