Description
IS230TDBTH6A Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Although it was established only a few months ago, ABB Future Lab has already cooperated with Huawei to complete the AI training of garbage sorting robots in two months. This robot uses AI technology based on Huawei chips and uses industrial cameras to sort objects.Obviously, adjusting the business model and organizational structure is an important reason why ABB has always been at the forefront of the industry.From technology iteration to application implementation, ABB aims to provide complete solutionsAs a pioneer in manufacturing automation and digitalization, ABB”s products in the automation field are constantly improving, and its application industries are also expanding.In Alf”s view, the structure and construction of automation have not changed much in the past 30 years. From signal collection and information transmission to work scenarios or operational interfaces, the flow of information in automated systems has basically not changed.But the arrival of 5G may change the way information is transmitted between devices. 5G’s characteristics such as large capacity, high reliability and low latency make it possible to realize independent connections between devices. If real-time mainline connection can be achieved and installed on the cloud or platform, it will be a more disruptive application.5G will not only change the way ABB operates, but is also likely to introduce digitalization into the industry, including digital operation and maintenance. ABB has launched an industrial Internet solution called ABB Ability, which firstly provides a platform, and secondly, it includes all ABB”s digital cloud products, such as equipment industrial solutions and transportation solutions.In addition to digitization, another focus of Alf is the autonomy of machines. He took the autonomous management of autonomous driving and warehousing as examples to think about the development process of machine autonomy – from human operation to machine operation, and ultimately to autonomous implementation and testing without the need for humans at all.For ABB, in addition to popular autonomous driving technology, industrial production scenarios also have strong demand for the autonomy of machinery and equipment, such as autonomous docking of ships and the mining industry. In some industrial scenarios represented by mining, toxic gases and substances in the working environment are harmful to the human body, so equipment is required to have the ability to enter and leave the mine independently. ABB first needs to study the value proposition of these businesses, discover potential applications, and then discover in which fields it can be applied.A technology close to autonomy is artificial intelligence. Since its birth in the 1960s, it has been attracting people”s attention, and there have been endless discussions about “robot replacement”. After decades of development, related technologies have gradually matured, and more and more AI technologies have begun to be discussed in the application field. The products and technologies of leading manufacturers such as ABB have attracted much attention.ABB has been applying AI technology to its products for 20 years, but its current mature products are mainly diagnostic applications based on traditional statistics. Alf introduced to Yiou New Manufacturing that as part of the diagnostic solution, this technology is mainly used to implement condition monitoring functions. More mature applications are reflected in the automated management of equipment, such as the electronic management of ships.Machine learning is another promising AI technology. At the World Artificial Intelligence Conference at the end of August this year, ABB demonstrated a coffee workbench composed of a two-arm collaborative robot Yu Mi. Through guided programming of YuMi, the collaborative robot can learn and remember the barista”s movements to complete the complete process of making coffee, latte art and delivering it to the audience.In actual implementation scenarios, this technology is used to transform terminals carrying containers. By simulating the location and status of box handling, the collected data is used to train the AI, allowing the AI to know the location of the container, thereby achieving automation.From automation, digitalization, autonomy and artificial intelligence technologies, ABB is not a blind pursuer of emerging technology concepts. It pays more attention to customer needs and actual implementation, and achieves better solutions through different product combinations.There are two major difficulties in balancing R&D and business and implementing solutions.As a commercial company, ABB still needs to consider the balance between R&D investment and revenue. In Alf”s view, they do not have unlimited R&D resources, so they need to focus on finding a balance between improving original product functions and developing new functions. In terms of technology research and development, we also need to try to focus on projects that can bring the greatest value to the company.Regarding the specific implementation of digital solutions, Alf believes that there are currently two main difficulties.The first difficulty is that ABB cannot just develop a general solution, because different industry segments have different needs, so it must design solutions that suit their different needs. ABB not only needs to master knowledge in different fields and different applications, but also needs to consider the availability of data.The second difficulty lies in the use of data, because AI requires a large amount of data training. On the one hand, ABB needs to encourage customers to provide data for training models; on the other hand, ABB also needs to ensure customers the privacy, ownership and security of their data.”Industrial artificial intelligence needs to be combined with models and data. But the most important thing is that we must provide value to customers through the use of AI, otherwise we will just apply technology for the sake of applying technology.” Alf concluded.
IS200VPROH2B Gas turbine system Mark VI
IS200EPSMG1ABB Gas turbine system Mark VI
IS2020ISUCG Gas turbine system Mark VI
IS215VCMIH2BZZ01A GE power control board
IS420PUAAH1AD Gas turbine system Mark VI
DS200QTBAG1ACB Gas turbine system Mark VI
DS3800HRCA1D1B Processor/Controller Mark VI System
IS410STCIS6A Processor/Controller Mark VI System
IS210SCLSH1A High performance processor module GE
IS200DTURH1ABA High performance processor module GE
IS200TRPAS1A Gas turbine system Mark VI
IS420YDOAS1B From General Electric in the United States
DS200DTBDG1 Processor/Controller Mark VI System
IS220PRTDH1A Processor/Controller Mark VI System
IS215PCMIH1A Processor/Controller Mark VI System
IS420ESWAH3A High performance processor module GE
IS210RERCH1RBB High performance processor module GE
DS200TBQBG1ACB I/O excitation redundant module GE
IS220YDOAS1AJ From General Electric in the United States
IS215UCVEH2A High performance processor module GE
DS200DMCBG1AJG From General Electric in the United States
IS200VAICH1C Gas turbine system Mark VI
DS200ADMAH1A Gas turbine system Mark VI
DS200DCFBG1BNC From General Electric in the United States
IS200HFPAG1 From General Electric in the United States
DS200TBCBG1AAA Gas turbine system Mark VI
IS215VCMIH2CA I/O excitation redundant module GE
DS200PLIBG1ACA From General Electric in the United States
IS200EPDMG1B Gas turbine system Mark VI
IS200ECTBG1ADE High performance processor module GE
IS430SNUAH1AC High performance processor module GE
DS200TCDAH1BHD Gas turbine system Mark VI
DS200TBQAG1ABB I/O excitation redundant module GE
IS200TSVOH1BBB High performance processor module GE
IS220PTURH1BF From General Electric in the United States
IS220YDOAS1AJ GE power control board
DS200TCPSG1A Processor/Controller Mark VI System
IS200EPDMG1ABA High performance processor module GE
IS200BPIHH1AAA Processor/Controller Mark VI System
IS215VPROH1B Processor/Controller Mark VI System
DS200PTCTG2BAA High performance processor module GE
IS415UCVGH1A I/O excitation redundant module GE
IS200TBCIH2B GE power control board
DS200TCDAG1B Gas turbine system Mark VI
IS200ICBDH1BAA From General Electric in the United States
IS420YDOAS1B GE power control board
IS200TVIBH2B From General Electric in the United States
IS215UCVEH2AF From General Electric in the United States
IS215PCMIH1A GE power control board
IS210BPPBH2CAA I/O excitation redundant module GE
IS220PPRFH1B From General Electric in the United States
DS200FCGDH1B GE power control board
IS200IVFBG1AAA From General Electric in the United States
IS210DRTDH1A High performance processor module GE
IS220PHRAH1BD Gas turbine system Mark VI
IS200DAMCG1A GE power control board
IS200ECTBG1A GE power control board
IS420ESWAH1A Processor/Controller Mark VI System
DS200TCCBG3BDC Processor/Controller Mark VI System
IS200TDBTH6ABC Processor/Controller Mark VI System
IS200VCRCH1B GE power control board
IS230SNIDH1A From General Electric in the United States
IS200BICRH1A From General Electric in the United States
DS200RTBAG1AHC From General Electric in the United States
IS200DSPXH2DBD Gas turbine system Mark VI
IS410STCIS2A Gas turbine system Mark VI
DS200TBQCG1A I/O excitation redundant module GE
IS200TSVCH2AED I/O excitation redundant module GE
IS200EPDMG1B High performance processor module GE
DS200DCFBG1B Gas turbine system Mark VI
IS200VCRCH1BBB Gas turbine system Mark VI
DS200TCQAG1AFD I/O excitation redundant module GE
DS200ITXDG1ABA High performance processor module GE
IS210AEBIH3BED GE power control board
IS210AEAAH1B Processor/Controller Mark VI System
IS200VTURH2BAC From General Electric in the United States
IS420ESWBH3AX Gas turbine system Mark VI
IS200ERRBG1ABA GE power control board
IS420UCSBH4A From General Electric in the United States
DS215KLDCG1AZZ03A Processor/Controller Mark VI System
IS200PRTDH1A I/O excitation redundant module GE
DS200PTBAG1BAA From General Electric in the United States
IS2020RKPSG2A High performance processor module GE
IS200EGPAG1A I/O excitation redundant module GE
IS200STAOH2AAA From General Electric in the United States
IS200DSVOH1ABA I/O excitation redundant module GE
IS200TBCIH2C I/O excitation redundant module GE
DS200DTBCG1AAA Gas turbine system Mark VI
IS220PDIAH1B From General Electric in the United States
IS210AEDBH4AGD GE power control board
DS200TCEBG1ACE Gas turbine system Mark VI