Description
IS215UCVGH1A Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Shandong”s policies are more specific. In addition to financial incentives, land supply, tax incentives, etc., it also mentions improving the first (set) of major technical equipment research and development and market promotion support policies, and accelerating independent innovation and industrialization of high-end products. Encourage provincial equity investment guidance funds to tilt towards the high-end equipment field, give full play to the leverage and amplification effect of fiscal funds, and attract and leverage social capital to increase investment.How can local governments effectively support high-end manufacturing?Analysts believe that when formulating development plans for high-end manufacturing, local governments must first conduct thorough research and research on the industry, find a development path that suits them, and formulate policies that suit the laws of industrial development. For example, Chongqing has a developed automobile industry, Shanghai has a strong industrial foundation in large aircraft, chips and robot manufacturing, and Shandong has a certain technical foundation in marine engineering equipment and rail transit equipment. We should leverage our strengths and avoid weaknesses and formulate policies based on local conditions.Second, local policies should not pursue automation and intelligence one-sidedly and support a number of face-saving projects that are blooming everywhere. For example, in the past two years, my country”s robot industrial parks have blossomed all over the country, and local governments have used subsidies and tax incentives to support a number of low-end, small and weak “intelligent manufacturing” robot industries.Third, local governments’ understanding of high-end manufacturing needs to be further deepened, and automation cannot simply be equated with high-end manufacturing. Local governments use subsidies to guide companies to purchase high-end automation equipment, but companies must also use good technology instead of expensive technology based on actual conditions. The case of Tesla’s over-reliance on automation causing a production capacity crisis should be taken seriously.Fourth, neither local governments nor enterprises can rely solely on buying and selling to promote high-end manufacturing. The government should guide and encourage technological innovation and seek long-term development.Generally speaking, enterprises should be closer to the market in terms of their own development and industry needs, and the government should create a policy environment more conducive to enterprise innovation, such as tax cuts, streamlining administration and delegating powers, etc., to help enterprises reduce costs as much as possible and give them the greatest benefits. Expansion capacity.
IS420UCSCS2A-B From General Electric in the United States
IS200TVBAH2ACC I/O excitation redundant module GE
IS200JPDSG1ACBGE From General Electric in the United States
IS220PDIIH1B GE power control board
DS200LDCCH1AGA GE power control board
IS200BLIGH1A Gas turbine system Mark VI
IS200ERRBG1A From General Electric in the United States
IS200DSPXH1D I/O excitation redundant module GE
IS200ERIOH1ACB From General Electric in the United States
IS200TBTCH1CBB High performance processor module GE
IS200DAMAG1B From General Electric in the United States
IS200VAICH1DAA From General Electric in the United States
IS200HFPAG2A I/O excitation redundant module GE
IS200RCSAG1ABB GE power control board
IS200TREGH1BDC Processor/Controller Mark VI System
IS210DTAIH1A Processor/Controller Mark VI System
IS230TNTRH1C Gas turbine system Mark VI
DS200TCEAG1BNE I/O excitation redundant module GE
IS200JPDDG1A Processor/Controller Mark VI System
IS200TRLYH1BGF GE power control board
DS200TCEAG1BTF High performance processor module GE
IS200TRLYH1C High performance processor module GE
IS210AEBIH1ADC From General Electric in the United States
IS200ESYSH3ABB Gas turbine system Mark VI
IS200HFPAG2ADC GE power control board
IS200BICRH1A GE power control board
IS220PRTDH1B Processor/Controller Mark VI System
DS200ACNAG1ADD High performance processor module GE
DS200TCRAG1ABB GE power control board
DS200SDCCG4AFD High performance processor module GE
DS200GDPAG1AKF High performance processor module GE
DS200TCCAG1BAA I/O excitation redundant module GE
DS215TCDAG1BZZ01A From General Electric in the United States
GDS1168-PFF-PA-NF Processor/Controller Mark VI System
IS210MACCH2AEG High performance processor module GE
IS200EGPAG1B Gas turbine system Mark VI
IS200SPROH1AAB Processor/Controller Mark VI System
DS200UPSAG1A Processor/Controller Mark VI System
DS200TBQCG1AAA High performance processor module GE
DS200SPCBG1ADC I/O excitation redundant module GE
DS200IIBDG1A High performance processor module GE
IS200TRLYS1BGG High performance processor module GE
IS215UCVFH2AB High performance processor module GE
DS200SDCCG5A GE power control board
IS210AEBIH3B Gas turbine system Mark VI
IS200DAMDG2A Processor/Controller Mark VI System
DS3820LT4AICIA From General Electric in the United States
IS400JPDHG1ABB Gas turbine system Mark VI
IS200VTCCH1CBC GE power control board
DS200TCDAH1B Processor/Controller Mark VI System
IS210AEACH1A I/O excitation redundant module GE
DS200LDCCH1AGA Processor/Controller Mark VI System
IS410TRLYS1F High performance processor module GE
IS220PRTDH1B High performance processor module GE
IS215SECAH1A I/O excitation redundant module GE
IS200TBTCH1C I/O excitation redundant module GE
DS200TCQCG1BKG Gas turbine system Mark VI
IS200BPVCG1B I/O excitation redundant module GE
IS210BPPBH2B From General Electric in the United States
IS200EPDMG1ABA I/O excitation redundant module GE
IS200STCIH6ADD Gas turbine system Mark VI
IS200VCRCH1BBB GE power control board
IS200BPIIH1AAA High performance processor module GE
IS420YDOAS1B Processor/Controller Mark VI System
IS210AEAAH1B GE power control board
DS200TCDAG1PR5A Processor/Controller Mark VI System
IS200DAMDG2AAA Processor/Controller Mark VI System
DS200SDCCG4AFD From General Electric in the United States
IS200ICBDH1ABB From General Electric in the United States
DS200ACNAG1ADD Processor/Controller Mark VI System