Description
IS215UCVEN10A Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Shandong”s policies are more specific. In addition to financial incentives, land supply, tax incentives, etc., it also mentions improving the first (set) of major technical equipment research and development and market promotion support policies, and accelerating independent innovation and industrialization of high-end products. Encourage provincial equity investment guidance funds to tilt towards the high-end equipment field, give full play to the leverage and amplification effect of fiscal funds, and attract and leverage social capital to increase investment.How can local governments effectively support high-end manufacturing?Analysts believe that when formulating development plans for high-end manufacturing, local governments must first conduct thorough research and research on the industry, find a development path that suits them, and formulate policies that suit the laws of industrial development. For example, Chongqing has a developed automobile industry, Shanghai has a strong industrial foundation in large aircraft, chips and robot manufacturing, and Shandong has a certain technical foundation in marine engineering equipment and rail transit equipment. We should leverage our strengths and avoid weaknesses and formulate policies based on local conditions.Second, local policies should not pursue automation and intelligence one-sidedly and support a number of face-saving projects that are blooming everywhere. For example, in the past two years, my country”s robot industrial parks have blossomed all over the country, and local governments have used subsidies and tax incentives to support a number of low-end, small and weak “intelligent manufacturing” robot industries.Third, local governments’ understanding of high-end manufacturing needs to be further deepened, and automation cannot simply be equated with high-end manufacturing. Local governments use subsidies to guide companies to purchase high-end automation equipment, but companies must also use good technology instead of expensive technology based on actual conditions. The case of Tesla’s over-reliance on automation causing a production capacity crisis should be taken seriously.Fourth, neither local governments nor enterprises can rely solely on buying and selling to promote high-end manufacturing. The government should guide and encourage technological innovation and seek long-term development.Generally speaking, enterprises should be closer to the market in terms of their own development and industry needs, and the government should create a policy environment more conducive to enterprise innovation, such as tax cuts, streamlining administration and delegating powers, etc., to help enterprises reduce costs as much as possible and give them the greatest benefits. Expansion capacity.
IS215VCMIH2B I/O excitation redundant module GE
DS200SDCIG1AEB Processor/Controller Mark VI System
IS230TNTRH1C High performance processor module GE
IS220PPDAH1A Processor/Controller Mark VI System
IS220PRTDH1B GE power control board
IS400JPDHG1ABB From General Electric in the United States
IS200TPROS1CBB Processor/Controller Mark VI System
IS210AEDBH3A From General Electric in the United States
IS200TRLYH1B Processor/Controller Mark VI System
DS200VPBLG1AEE High performance processor module GE
IS200DSPXH2CAA From General Electric in the United States
IS200ERSCG2A High performance processor module GE
IS220PAOCH1A I/O excitation redundant module GE
DS200TCQAG1BHF From General Electric in the United States
IS220YSILS1BB From General Electric in the United States
IS200DTAIH1ACC Gas turbine system Mark VI
DS3820PSCB1C1B I/O excitation redundant module GE
IS420UCSBH1A Processor/Controller Mark VI System
IS220PAICH1B I/O excitation redundant module GE
IS210DPWAG1AA From General Electric in the United States
DS200DMCBG1A Processor/Controller Mark VI System
IS220PDIOH1A I/O excitation redundant module GE
IS220PSCAH1A High performance processor module GE
IS200GDDDG1A From General Electric in the United States
IS220YDIAS1A Gas turbine system Mark VI
IS200SRLYH2AAA GE power control board
IS215UCVEM06A Gas turbine system Mark VI
IS420UCSBH1A I/O excitation redundant module GE
IS210TRPGH1B Processor/Controller Mark VI System
DS200TCCBG8BED Processor/Controller Mark VI System
IS215ACLEH1B From General Electric in the United States
IS200TRESH1A From General Electric in the United States
IS215UCCAM03 Processor/Controller Mark VI System
DS200SLCCG3ACC Processor/Controller Mark VI System
DS200TCQCG1BHF Processor/Controller Mark VI System
IS200TSVCH1AJE High performance processor module GE
IS200ISBDG1AAA GE power control board
IS200VAICH1D High performance processor module GE
IS220PPDAH1A GE power control board
IS220PAOCH1BD GE power control board
IS230SAISH1A High performance processor module GE
IS215ACLEH1B Gas turbine system Mark VI
IS200VATFG1AAA I/O excitation redundant module GE
IS220PRTDH1A From General Electric in the United States
IS200TTURH1B High performance processor module GE
IS200TGENH1A Processor/Controller Mark VI System
IS220PAICHIA I/O excitation redundant module GE
IS200EISBH1AAA High performance processor module GE
IS2020RKPSG3A Processor/Controller Mark VI System
IS200VAICH1DAB GE power control board
IS420ESWBH3A Gas turbine system Mark VI
DS200PLIBG1ACA GE power control board
IS400TCASH1AEC I/O excitation redundant module GE
IS200TNH1A Processor/Controller Mark VI System
IS220PDIOH1B I/O excitation redundant module GE
IS210DTTCH1AA GE power control board
DS200CPCAG1A Processor/Controller Mark VI System
DS200SDCCG5AHD I/O excitation redundant module GE
IS215VCMIH1B Gas turbine system Mark VI