IS215UCVEM01A Gas turbine system Mark VI

Brand: GE

model: IS215UCVEM01A
System: Gas turbine system
Origin: United States

The GE IS215UCVEM01A turbine control module is used for various applications, including:

Electric power generation

Oil and Gas

EADS

ship

  • Email:Angela@sauldcsplc.com
  • Phone:+86 18350224834
  • WhatsApp:+8618350224834

Description

IS215UCVEM01A Product Introduction

GE IS215UCVEM01A Embedded Controller Module
 
GE IS215UCVEM01A Embedded Controller Module Product Details:
 
GE IS215UCVEM01A is an embedded controller module developed by General Electric (GE) for industrial automation and control systems.
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
 
Industrial automation: used to master and monitor various automation processes in the factory, such as production lines, machine installation,
manufacturing processes, etc.
Power industry: used for mastering and monitoring tasks in power plants and power distribution systems.
Chemical and process industries: used to monitor and grasp the production process in chemical plants, refineries, and other process industries.
Manufacturing industry: can be used to master and optimize the production process, ensuring the effectiveness of labor and product quality.
Transportation: The application in the traffic signal system, railway system, or other traffic control systems.
Construction automation: used for automation systems in construction, such as building management systems, intelligent construction control systems, etc.
Fire disposal punishment and situation control: application in the pollution fire disposal punishment plant, fire disposal punishment measures, and situation
monitoring and control system.
These are just some potential application areas, in fact, there can be more application scenarios, depending on the effectiveness and personality
of the controller module, as well as the specific needs of the customer.
 
 
General Electric has designed the processor/controller for the IS215UCVEM01A Mark VIe system. The Mark VI platform is General Electric”s Speedtronic range,
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
 
 
This IS215UCVEM01A is a single box assembly with a front panel for communication connections, two screws installed on the rear edge, and three grille holes for ventilation. The controller is designed to
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
 
IS215UCVEM01A uses the QNX operating system. It has a 667MHz Freescale 8349 processor. This board is powered by a 12 watt, 18-36 V DC power supply. Even at its maximum rated temperature, t
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Contact Us
 
Mobile phone: 18350224834
 
E-mail: sauldcsplc@outlook.com
 
WhatsApp:+86 18350224834

Although it was established only a few months ago, ABB Future Lab has already cooperated with Huawei to complete the AI ​​training of garbage sorting robots in two months. This robot uses AI technology based on Huawei chips and uses industrial cameras to sort objects.Obviously, adjusting the business model and organizational structure is an important reason why ABB has always been at the forefront of the industry.From technology iteration to application implementation, ABB aims to provide complete solutionsAs a pioneer in manufacturing automation and digitalization, ABB”s products in the automation field are constantly improving, and its application industries are also expanding.In Alf”s view, the structure and construction of automation have not changed much in the past 30 years. From signal collection and information transmission to work scenarios or operational interfaces, the flow of information in automated systems has basically not changed.But the arrival of 5G may change the way information is transmitted between devices. 5G’s characteristics such as large capacity, high reliability and low latency make it possible to realize independent connections between devices. If real-time mainline connection can be achieved and installed on the cloud or platform, it will be a more disruptive application.5G will not only change the way ABB operates, but is also likely to introduce digitalization into the industry, including digital operation and maintenance. ABB has launched an industrial Internet solution called ABB Ability, which firstly provides a platform, and secondly, it includes all ABB”s digital cloud products, such as equipment industrial solutions and transportation solutions.In addition to digitization, another focus of Alf is the autonomy of machines. He took the autonomous management of autonomous driving and warehousing as examples to think about the development process of machine autonomy – from human operation to machine operation, and ultimately to autonomous implementation and testing without the need for humans at all.For ABB, in addition to popular autonomous driving technology, industrial production scenarios also have strong demand for the autonomy of machinery and equipment, such as autonomous docking of ships and the mining industry. In some industrial scenarios represented by mining, toxic gases and substances in the working environment are harmful to the human body, so equipment is required to have the ability to enter and leave the mine independently. ABB first needs to study the value proposition of these businesses, discover potential applications, and then discover in which fields it can be applied.A technology close to autonomy is artificial intelligence. Since its birth in the 1960s, it has been attracting people”s attention, and there have been endless discussions about “robot replacement”. After decades of development, related technologies have gradually matured, and more and more AI technologies have begun to be discussed in the application field. The products and technologies of leading manufacturers such as ABB have attracted much attention.ABB has been applying AI technology to its products for 20 years, but its current mature products are mainly diagnostic applications based on traditional statistics. Alf introduced to Yiou New Manufacturing that as part of the diagnostic solution, this technology is mainly used to implement condition monitoring functions. More mature applications are reflected in the automated management of equipment, such as the electronic management of ships.Machine learning is another promising AI technology. At the World Artificial Intelligence Conference at the end of August this year, ABB demonstrated a coffee workbench composed of a two-arm collaborative robot Yu Mi. Through guided programming of YuMi, the collaborative robot can learn and remember the barista”s movements to complete the complete process of making coffee, latte art and delivering it to the audience.In actual implementation scenarios, this technology is used to transform terminals carrying containers. By simulating the location and status of box handling, the collected data is used to train the AI, allowing the AI ​​to know the location of the container, thereby achieving automation.From automation, digitalization, autonomy and artificial intelligence technologies, ABB is not a blind pursuer of emerging technology concepts. It pays more attention to customer needs and actual implementation, and achieves better solutions through different product combinations.There are two major difficulties in balancing R&D and business and implementing solutions.As a commercial company, ABB still needs to consider the balance between R&D investment and revenue. In Alf”s view, they do not have unlimited R&D resources, so they need to focus on finding a balance between improving original product functions and developing new functions. In terms of technology research and development, we also need to try to focus on projects that can bring the greatest value to the company.Regarding the specific implementation of digital solutions, Alf believes that there are currently two main difficulties.The first difficulty is that ABB cannot just develop a general solution, because different industry segments have different needs, so it must design solutions that suit their different needs. ABB not only needs to master knowledge in different fields and different applications, but also needs to consider the availability of data.The second difficulty lies in the use of data, because AI requires a large amount of data training. On the one hand, ABB needs to encourage customers to provide data for training models; on the other hand, ABB also needs to ensure customers the privacy, ownership and security of their data.”Industrial artificial intelligence needs to be combined with models and data. But the most important thing is that we must provide value to customers through the use of AI, otherwise we will just apply technology for the sake of applying technology.” Alf concluded.

IS210BAPAH1A GE power control board
IS220PAICH2A Processor/Controller Mark VI System
IS200TRLYH1B High performance processor module GE
IS200RCSAG1A I/O excitation redundant module GE
IS220PVIBH1A High performance processor module GE
IS210RERCH1R High performance processor module GE
IS215VPROH1B Gas turbine system Mark VI
DS200SDCCG1AHD GE power control board
IS200BPIHH1AAA High performance processor module GE
IS220PPROH1A Gas turbine system Mark VI
DS200DCFBG1BLC From General Electric in the United States
IS420UCSBH1A Gas turbine system Mark VI
IS200TBCIH1C Processor/Controller Mark VI System
IS200JPDBG1A Gas turbine system Mark VI
IS200VRTDH1B High performance processor module GE
IS200EPSMG2A GE power control board
DS200LDCCH1A High performance processor module GE
IS200ERRBG1ABA Processor/Controller Mark VI System
DS200DCFBG1BGB Gas turbine system Mark VI
IS200ESYSH3A I/O excitation redundant module GE
IS215ACLEH1BB I/O excitation redundant module GE
IS200EPCTG1A I/O excitation redundant module GE
IS200VVIBH1D From General Electric in the United States
DS200TCEAG1BTF GE power control board
IS230PCAAH1B I/O excitation redundant module GE
IS200BPIHH1AAA I/O excitation redundant module GE
IS230TCISH6C From General Electric in the United States
IS220PRTDH1B Gas turbine system Mark VI
IS215UCVDH5A Processor/Controller Mark VI System
IS200TBCIH2 Processor/Controller Mark VI System
IS200JPDSG1A High performance processor module GE
DS200SIOBH1ACA GE power control board
IS220PSVOH1B High performance processor module GE
IS200TSVCH2AED High performance processor module GE
IS215ACLAH1A Gas turbine system Mark VI
IS210DSVOH1A GE power control board
IS210WSVOH1AE GE power control board
IS200EDEXG1A Processor/Controller Mark VI System
IS420ESWAH2A From General Electric in the United States
IS200VSVOH1BED Gas turbine system Mark VI
IS200SRTDH2A Processor/Controller Mark VI System
IS200EHPAG1B GE power control board
IS200JPDPG1A From General Electric in the United States
IS230PCAAHIA GE power control board
DS200TCQAG1BPR1 Gas turbine system Mark VI
IS200TRESH1A GE power control board
IS200DAMAG1BCB I/O excitation redundant module GE
IS420YAICS1B I/O excitation redundant module GE
IS200TBAIH1CCC I/O excitation redundant module GE
DS200TBCBG1AAA From General Electric in the United States
IS215UCVGM06A I/O excitation redundant module GE
IS200VPWRH1A I/O excitation redundant module GE
IS200EPSMG2AED Processor/Controller Mark VI System
IS200DSPXH1D High performance processor module GE
IS200TCATH1ABA High performance processor module GE
IS200AEPCH1CCB From General Electric in the United States
IS210RERCH1R From General Electric in the United States
IS200TSVCH1A Processor/Controller Mark VI System
IS220PTURH1B High performance processor module GE
IS215ISBBH2A High performance processor module GE
DS200DTBBG1 Gas turbine system Mark VI
IS200TBCIH2C High performance processor module GE
IS200VAICH1DAA Processor/Controller Mark VI System
IS200BPVCG I/O excitation redundant module GE
IS200VATFG1A Gas turbine system Mark VI
IS200TTPWH1A GE power control board
IS200ESYSH3AAA Processor/Controller Mark VI System
IS410TRLYS2F High performance processor module GE
DS200TBCBG1AAA High performance processor module GE
IS210DTAIH1AA High performance processor module GE
DS200ITXSG1ACB Gas turbine system Mark VI
DS200DCFBG1BGB From General Electric in the United States
DS215KLDBG1AZZ03B GE power control board
IS230TNPAH2A From General Electric in the United States
IS200TSVCH2ADC GE power control board
IS220PAOCH1A From General Electric in the United States
IS200TPROH1BBB High performance processor module GE
IS200TTURH1CFD From General Electric in the United States
IS200ICIAH1A Processor/Controller Mark VI System
IS215AEPCH1FA From General Electric in the United States
DS215KLDBG1AZZ03B From General Electric in the United States
IS200ERIOH1ACB Gas turbine system Mark VI
IS200STCIH6A High performance processor module GE
DS200SLCCG1AFG From General Electric in the United States
IS220PSCAH1A I/O excitation redundant module GE