Description
IS200WROGH1A Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Distinguished according to whether there is a position sensor, first of all, it is divided into sensing and non-sensing. That is, whether Hall or other similar position sensors are used to sense the position angle of the stator and rotor. In air pump applications, many use non-inductive control. The excellent algorithm of through-hole is that after the motor is running, it detects the changes in phase current to switch the phase current. In some heavy-duty or precise control applications, sensory methods are used.According to the three-phase power supply of the inverter, it can be divided into square wave control and sine wave control. The square wave control strategy is simple, and the control process is direct and effective. It adopts a six-step commutation strategy. The CPU modulates the PWM to drive the power switch tube to generate a three-phase power supply that can run the motor. The control strategy of sine wave is relatively complex, but the control effect is much better.In sine wave control, there are two main control strategies.One is direct torque control DTC Baidu Encyclopedia. The method is to calculate the estimated values of motor flux and torque based on the measured motor voltage and current. After controlling the torque, the motor speed can also be controlled. Direct torque control is a patent of the European ABB company. .The second is, space vector control FOC Baidu Encyclopedia. Its essence is to equate an AC motor to a DC motor, and independently control the speed and magnetic field components. By controlling the rotor flux linkage, and then decomposing the stator current, the two components of torque and magnetic field are obtained. After coordinate transformation, the normal motor is realized. handover or decoupling control.During sine wave control, there are many derived more sophisticated control strategies, such as feedforward control, maximum torque control, field weakening control, etc.In the process of controlling the motor, there are multiple feedback control loops. When controlling the output of the motor, there is a current loop; on this basis, there is a control loop that controls the speed; when a servo motor is used, there is a position loop control.
DS200TCPDG1BEC Processor/Controller Mark VI System
IS220PAOCH1BD Gas turbine system Mark VI
IS210BPPBH2BMD High performance processor module GE
IS420PVIBH1B High performance processor module GE
IS200ISBBG1AAB Processor/Controller Mark VI System
IS200DAMDG2A GE power control board
IS215VPROH2B Processor/Controller Mark VI System
8201-HI-IS Gas turbine system Mark VI
DS200TBQDG1AFF High performance processor module GE
IS420ESWAH2A I/O excitation redundant module GE
IS220PDOAH1A From General Electric in the United States
IS200TVBAH2ACC High performance processor module GE
IS220PDIOH1A Processor/Controller Mark VI System
IS210DSVOH1A Processor/Controller Mark VI System
DS200SLCCG3AGH High performance processor module GE
IS200ERGTH1AAA I/O excitation redundant module GE
IS200JPDFG1A Gas turbine system Mark VI
DS200GDPAG1AHE Gas turbine system Mark VI
IS220PRTDH1A High performance processor module GE
DS200TCCAG1BAA Gas turbine system Mark VI
DS200RTBAG2AHC From General Electric in the United States
IS200STAIH1ABB From General Electric in the United States
IS200TSVCH1AJE GE power control board
DS200LDCCH1APA GE power control board
DS200SHCBG1ABC GE power control board
IS210AEBIH1BAA Gas turbine system Mark VI
IS220PDIAH1B Gas turbine system Mark VI
IS400WROFH1A I/O excitation redundant module GE
IS200TSVOH1BCC From General Electric in the United States
IS210MVRCH1A GE power control board
IS420UCSBH1A High performance processor module GE
DS215TCQFG1AZZ01A Processor/Controller Mark VI System
IS420ESWBH3A I/O excitation redundant module GE
IS200TRLYH1F I/O excitation redundant module GE
DS200SIOBH1ABA I/O excitation redundant module GE
IS200ISBBG1A I/O excitation redundant module GE
IS215UCVEM01A Gas turbine system Mark VI
IS210MACCH1ACC GE power control board
IS200DAMEG1A From General Electric in the United States
IS200DSPXH1DBD Processor/Controller Mark VI System
DS2020FECNRX010A GE power control board
IS230SNAOH2A GE power control board
IS215UCCAM03A High performance processor module GE
DS200TCPDG2B From General Electric in the United States
IS210BAPAH1A From General Electric in the United States
IS210BPPCH1AD I/O excitation redundant module GE
IS200JPDFG1A I/O excitation redundant module GE
IS210AEBIH3BBC Gas turbine system Mark VI
IS420UCECH1B Gas turbine system Mark VI
IS200VPROH1B GE power control board
IS200EISBH1AAA I/O excitation redundant module GE
DS200RCTBG1AAA I/O excitation redundant module GE
IS220PPDAH1B From General Electric in the United States
IS200JPDBG1A From General Electric in the United States
IS420UCSBH4A Gas turbine system Mark VI
IS200IGDMH1AAA Gas turbine system Mark VI
IS200ERSCG2A Gas turbine system Mark VI
DS200SSRAG1A High performance processor module GE
IS220PPROH1A High performance processor module GE
DS2020FECNRX010A Gas turbine system Mark VI
IS200TRPGH1BDE From General Electric in the United States
DS200TCCBG3BDC Gas turbine system Mark VI
IS220PRTDH1A Gas turbine system Mark VI
DS200RCTBG1AAA GE power control board
IS200TVBAH2A Gas turbine system Mark VI
DS200SDCCG1A I/O excitation redundant module GE
IS420PPNGH1A High performance processor module GE
IS200ICBDH1B High performance processor module GE
IS200IHG1A From General Electric in the United States
IS200TBAIH1C I/O excitation redundant module GE
IS200RCSAG1A Gas turbine system Mark VI
IS230TVBAH4A Gas turbine system Mark VI
IS420UCSBH4A High performance processor module GE
IS200JPDFG2AED Gas turbine system Mark VI
DS200TCQCG1B GE power control board