IS200VRTDH1BAB I/O excitation redundant module GE

Brand: GE

model: IS200VRTDH1BAB
System: Gas turbine system
Origin: United States

The GE IS200VRTDH1BAB turbine control module is used for various applications, including:

Electric power generation

Oil and Gas

EADS

ship

  • Email:Angela@sauldcsplc.com
  • Phone:+86 18350224834
  • WhatsApp:+8618350224834

Description

IS200VRTDH1BAB Product Introduction

GE IS200VRTDH1BAB Embedded Controller Module
 
GE IS200VRTDH1BAB Embedded Controller Module Product Details:
 
GE IS200VRTDH1BAB is an embedded controller module developed by General Electric (GE) for industrial automation and control systems.
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
 
Industrial automation: used to master and monitor various automation processes in the factory, such as production lines, machine installation,
manufacturing processes, etc.
Power industry: used for mastering and monitoring tasks in power plants and power distribution systems.
Chemical and process industries: used to monitor and grasp the production process in chemical plants, refineries, and other process industries.
Manufacturing industry: can be used to master and optimize the production process, ensuring the effectiveness of labor and product quality.
Transportation: The application in the traffic signal system, railway system, or other traffic control systems.
Construction automation: used for automation systems in construction, such as building management systems, intelligent construction control systems, etc.
Fire disposal punishment and situation control: application in the pollution fire disposal punishment plant, fire disposal punishment measures, and situation
monitoring and control system.
These are just some potential application areas, in fact, there can be more application scenarios, depending on the effectiveness and personality
of the controller module, as well as the specific needs of the customer.
 
 
General Electric has designed the processor/controller for the IS200VRTDH1BAB Mark VIe system. The Mark VI platform is General Electric”s Speedtronic range,
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
 
 
This IS200VRTDH1BAB is a single box assembly with a front panel for communication connections, two screws installed on the rear edge, and three grille holes for ventilation. The controller is designed to
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
 
IS200VRTDH1BAB uses the QNX operating system. It has a 667MHz Freescale 8349 processor. This board is powered by a 12 watt, 18-36 V DC power supply. Even at its maximum rated temperature, t
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Contact Us
 
Mobile phone: 18350224834
 
E-mail: sauldcsplc@outlook.com
 
WhatsApp:+86 18350224834

ABB will establish a new healthcare research center at the Texas Medical Center in Houston, USA, in October this year to install advanced collaborative robots for medical laboratories and hospitals. The new facility located at the Texas Medical Center Innovation Park will focus on the development of non-surgical medical robots. System, by 2025, the global market for non-surgical medical robots is expected to reach nearly 60,000 units, nearly four times that of 2018.ABB announced that it will introduce collaborative robots into medical laboratories and will set up a new healthcare research center at the Texas Medical Center Innovation Campus in Houston, Texas, USA. The center will be opened in October 2019 and will be ABB”s first research center dedicated to the healthcare field. ABB”s research team will work with medical staff, scientists and engineers on the Texas Medical Center campus to develop non-surgical medical robotic systems, including logistics and next-generation automated laboratory technology.An Shiming, President of ABB Group”s Robotics and Discrete Automation Division, said: “Developing next-generation laboratory processes in Houston will speed up manual workflows in medical laboratories, reduce and eliminate bottlenecks in laboratory work, and improve safety and consistency. “This is especially true for high-tech new treatments, such as the cancer treatment pioneered by the Texas Medical Center, which currently require a labor-intensive and time-intensive testing process.”At this stage, the number of patients who can be treated is limited by the shortage of highly qualified medical experts, who spend a lot of time performing repetitive and simple tasks, such as preparing slides and loading centrifuges. Automating these tasks through the use of robots will allow medical professionals to focus on higher-skilled and more productive work, significantly speeding up the testing process and ultimately helping more people receive treatment.ABB has analyzed the current large number of manual processes in medical laboratories and predicts that through the use of automation, the number of tests performed each year will increase by 50%. Training robots to complete repetitive processes will reduce the need for personnel and reduce repetitive strain injuries on the human body.As the world”s population ages, countries” health expenditures account for an increasing proportion of their gross domestic product. Improving healthcare efficiency through automation will not only improve the quality of patient care but also alleviate a range of social, political and financial challenges arising from the above issues. An internal ABB study shows that the non-surgical medical robot market is expected to reach nearly 60,000 units by 2025, nearly four times that of 2018.ABB collaborative robots can work side by side with humans safely and efficiently without the need for safety fences. Currently, ABB collaborative robots have been used in food and beverage laboratories around the world, and are also very suitable for medical institutions. The robots will be able to perform a range of repetitive, delicate and time-consuming tasks, including dosing, mixing and pipetting tasks, as well as sterile instrument assembly and centrifuge loading and unloading.Houston is an important city for global medical technology research, and the Texas Medical Center innovation ecosystem is an ideal choice for ABB”s new healthcare research center. The 20-person ABB Robotics team will be based in the new 5,300 square foot (500 square meter) research facility, which will include an automation laboratory and robotics training facilities, as well as work with innovative partners to develop solutions. Program meeting space.

DS200PLIBG2ACA From General Electric in the United States
IS200ICIAH1ABB High performance processor module GE
IS200ERDDH1ABA From General Electric in the United States
DS200SHVMG1A I/O excitation redundant module GE
IS200VCMIH1B Gas turbine system Mark VI
IS200VCCCH1B High performance processor module GE
IS410STCIS2A I/O excitation redundant module GE
IS200VVIBH1B Gas turbine system Mark VI
IS210AEBIH1ADB Processor/Controller Mark VI System
DS3820PSCB1C1B From General Electric in the United States
DS200PCCAG7A High performance processor module GE
IS200BPIIH1A Gas turbine system Mark VI
IS215WEMAH1B High performance processor module GE
DS200TCQAG1B Gas turbine system Mark VI
IS230TDBTH6A GE power control board
IS220PPROH1A From General Electric in the United States
IS200DSPXH1D From General Electric in the United States
IS200TBCIH1B From General Electric in the United States
IS220PAOCH1A High performance processor module GE
IS200VCMIH2B GE power control board
IS200ESELH1AAA I/O excitation redundant module GE
IS200PSCDG1A GE power control board
IS215UCVEM08B High performance processor module GE
IS200ICBDH1ABB High performance processor module GE
DS200ACNAG1A Gas turbine system Mark VI
IS200TBAIH1C High performance processor module GE
IS200DSPXH1DBD Gas turbine system Mark VI
IS200ERGTH1AAA From General Electric in the United States
IS200IGPAG2AED Processor/Controller Mark VI System
IS220PAICH1A Gas turbine system Mark VI
IS420UCSCH2A GE power control board
IS420PUAAH1A I/O excitation redundant module GE
DS200TCDAG1PR5A High performance processor module GE
IS200RAPAG1A High performance processor module GE
IS200DAMDG1AAA I/O excitation redundant module GE
IS200EPSMG2ADC GE power control board
IS200HFPAG1A I/O excitation redundant module GE
IS420YDIAS1B I/O excitation redundant module GE
IS200RAPAG1A From General Electric in the United States
IS210AEAAH1B High performance processor module GE
IS210AEAAH1B Gas turbine system Mark VI
DS200SLCCG4A High performance processor module GE
DS200ADMAH1A High performance processor module GE
IS215UCVEM01A High performance processor module GE
IS210MACCH2A High performance processor module GE
IS410JPDHG1A High performance processor module GE
IS215VCMIH2BB From General Electric in the United States
IS220PDIOH1B High performance processor module GE
GDS1168-PFF-PA-NF From General Electric in the United States
IS200IGDMH1AAA Processor/Controller Mark VI System
IS200TVIBH2B Gas turbine system Mark VI
IS220PSCAH1A Gas turbine system Mark VI
IS220PPDAH1A High performance processor module GE
IS420USBH1A I/O excitation redundant module GE
IS410STCIS2A GE power control board
IS200STCIH6AED Processor/Controller Mark VI System
IS200VTURH2BAC Processor/Controller Mark VI System
IS200VRTDH1B Processor/Controller Mark VI System
IS200SRTDH2ACB GE power control board
IS215AEPCH1C Processor/Controller Mark VI System
IS220PAOCH1A Gas turbine system Mark VI
DS200DTBDG1ABB GE power control board
IS420UCSCH1B Gas turbine system Mark VI
DS200PLIBG1ACA High performance processor module GE
IS200SSBAG1A GE power control board
IS200STAOH2AAA GE power control board