Description
IS200TPROH1C Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Double-decker train uses ABB traction transformer for the first timeRapid urbanization has brought about problems such as traffic congestion, air pollution and population expansion, forcing railway operators and infrastructure providers to transport more passengers on already busy rail transit systems. One solution to this outstanding contradiction is to increase the passenger capacity of existing transportation lines.On July 22, 2011, ABB , the world”s leading power and automation technology group, recently announced that Bombardier designed and manufactured the world”s first traction transformer that can be installed on the top of the locomotive for its new generation double-deck EMU train . This train can be used in commuter, regional and intercity rail transit. The use of double-decker trains is a good way to increase passenger capacity. This type of train has the best car seat ratio planning, and the improved acceleration performance of the train also effectively shortens the travel time between stations and expands the coverage of train services.The latest Bombardier double-decker trains have an ABB traction transformer installed on the top. They adopt an extra-wide body and better seat planning. The number of seats per meter of the body ranges from 5 to 5.8, providing more space for passengers. Compared with similar models currently on the market, Bombardier”s new trains can carry 35% more passengers.ABB and Bombardier have a long-standing relationship in the field of traction equipment for regional commuter trains, high-speed trains and railway locomotives. The traction transformer converts the grid voltage from the power grid above the train into the lower voltage required by the train”s traction system, and delivers it to the train”s driving equipment, as well as lighting, heating, ventilation systems, on-board LCD displays, information systems and other electrical system .In order to ensure the continuity of railway transportation and the effectiveness and reliability of the highest level of instant power supply, ABB specially designed traction transformers for OMNEO trains. Compared with the traction transformer on the single-layer SP AC IUM* EMU train provided by Bombardier for the Francilien line in the Paris region of France , the power supply capacity of the new transformer is increased by 25%. To save space, the roof-mounted traction system combines the separate cooling systems for the converter and transformer. This design reduces the number of fans while reducing cost and equipment weight. In addition, in order to save space and facilitate equipment maintenance and control, the transformer will be installed directly on the top channel of the vehicle.Bombardier worked with ABB to complete the design work, and the cabin baffles were installed on the inverter , cooling system and transformer to ensure that these components fit perfectly into the arc-shaped roof and are difficult to see from the outside after installation. In order to solve the problem of the high center of gravity of the double-decker train carriage, the transformer has also been designed accordingly to evenly distribute the weight of the equipment.Swiss ABB will build the largest solar power plant in Northern EuropeSwiss power and automation technology group ABB announced on August 11 that it has built the largest solar power station in Northern Europe at its low-voltage AC drive plant in Finland . The total investment in the entire solar power station project is approximately 500,000 euros, part of which comes from the Finnish government. renewable energy investment fund.ABB Finland”s low-voltage AC transmission plant is located in Helsinki. This solar power station is located on the roof of the factory and has a power of 181 kilowatts. The solar power generated is mainly used to charge the factory”s forklift truck batteries and reduce the peak load of the factory”s electricity consumption.Antti Suontausta, Senior Vice President of ABB”s low-voltage AC drives business, said: “This solar power generation system fully demonstrates the benefits of distributed power generation near power consumption areas. Solar power generation can bring high added value to users, especially for commercial and industrial applications . For buildings, solar power generation can reduce the building’s peak power load.”Finland”s sunshine is not very abundant, but this solar power station can take full advantage of the region”s long sunshine hours in summer. It is expected to generate 160,000 kilowatt hours of electricity per year, which is equivalent to the annual use of 30 local households that do not use electric heating equipment. power. This solar power will be directly integrated into the factory power grid to charge the forklift trucks in the factory, and the excess power can also be used by other equipment.The solar power station uses ABB”s latest string inverters and central inverters, which are designed and produced by ABB”s transmission plant in Helsinki. This is their first application in Finland. ABB solar inverters are mainly used to convert DC power produced by solar panels into high-quality AC power and integrate it into the power grid.
IS200TPROH1C From General Electric in the United States
DS200ACNAG1ADD I/O excitation redundant module GE
IS220PAICH2B I/O excitation redundant module GE
DS200TBQCG1AAA Processor/Controller Mark VI System
IS200TREGH1BDC GE power control board
DS200TBQCG1ABB From General Electric in the United States
IS220UCSAH1A Gas turbine system Mark VI
IS215ACLEH1AB From General Electric in the United States
IS215ACLEH1B I/O excitation redundant module GE
IS210AEBIH1A Processor/Controller Mark VI System
IS220PAOCH1BD From General Electric in the United States
IS420PUAAH1A Processor/Controller Mark VI System
IS220PDIOH1B From General Electric in the United States
DS200DDTBG2A From General Electric in the United States
IS215ACLEH1A Processor/Controller Mark VI System
IS200ERIOH1A From General Electric in the United States
IS215UCCAM03A Processor/Controller Mark VI System
IS200EPBPG1ACD I/O excitation redundant module GE
IS200SSCAH2AGD Gas turbine system Mark VI
IS420ESWBH3AX Processor/Controller Mark VI System
IS200TDBSH2ABC High performance processor module GE
IS200EGPAG1BCA GE power control board
IS215UCVGH1A High performance processor module GE
DS200TCPDG1B I/O excitation redundant module GE
IS200GGXDG1AA GE power control board
IS200ISBEH1A High performance processor module GE
IS200EROCH1ADD Processor/Controller Mark VI System
IS200DTAIH1ACC GE power control board
IS200VCRCH1B High performance processor module GE
DS215TCQAG1BZZ01A High performance processor module GE
IS200JPDLG1A From General Electric in the United States
IS200DTAIH1ABB From General Electric in the United States
IS220PPRFH1B Processor/Controller Mark VI System
IS215UCVEH2AE GE power control board
DS200SHVMG1AFE High performance processor module GE
DS200TCEAG1BTF Processor/Controller Mark VI System
DS200TCQAG1AFD GE power control board
IS2020ISUCG High performance processor module GE
DS200FCSAG2A GE power control board
IS400WROBH1A Processor/Controller Mark VI System
IS420ESWBH1A GE power control board
IS410TBCIS2C I/O excitation redundant module GE
IS215VCMIH2C High performance processor module GE
IS200STCIH4A Processor/Controller Mark VI System
IS200TTURH1BED Processor/Controller Mark VI System
IS200ECTBG2A I/O excitation redundant module GE
IS200TBA1H1C Processor/Controller Mark VI System
DS200ITXDG1ABA Gas turbine system Mark VI
IS200GGXDG1 GE power control board
IS200TDBTH6ACD From General Electric in the United States
IS215ACLEH1C I/O excitation redundant module GE
IS220PAOCH1BD High performance processor module GE
DS200TCDAH1BHE From General Electric in the United States
IS200TRLYS1BGG Gas turbine system Mark VI
DS3820PSCB1C1B GE power control board
IS200PMCIH1ABA From General Electric in the United States
IS210DRTH1AA High performance processor module GE
IS230STAIH2A High performance processor module GE
IS230STCIH6A I/O excitation redundant module GE
IS200STCIH6A I/O excitation redundant module GE
IS220PSVOH1B GE power control board
DS200DTBCG1AAA Processor/Controller Mark VI System
IS215UCVEM06A From General Electric in the United States
IS220PDIAH1A GE power control board
IS420YVIBS1B GE power control board
IS210AEDBH4AGD High performance processor module GE
IS200VAICH1DAB High performance processor module GE
IS420UCSBH1A GE power control board
IS215ACLAH1AS GE power control board
DS3800NGDC1B1A I/O excitation redundant module GE
IS220PVIBH1A GE power control board
IS200GGXDG1A High performance processor module GE
IS200PMCIH1AAA6BA00 High performance processor module GE
DS200FHVAG1A Gas turbine system Mark VI
IS200SRTDH2ACB From General Electric in the United States
IS215UCVGH1A Processor/Controller Mark VI System
IS20OSTTCH2A From General Electric in the United States
IS220PRTDH1A GE power control board
IS200ISBEH1A From General Electric in the United States
IS200ICBDH1ABA From General Electric in the United States
IS215ACLEH1C Gas turbine system Mark VI
IS200JPDDG1A High performance processor module GE
DS200RTBAG3AGC High performance processor module GE
IS215VPROH2B From General Electric in the United States
DS200SDCIG2AFB GE power control board
IS215UCVDH7AM GE power control board
IS200ERRRH1A High performance processor module GE
IS400WROGH1A Processor/Controller Mark VI System
DS200DSFBG1ACB I/O excitation redundant module GE
IS400WPDFH2A Processor/Controller Mark VI System