Description
IS200REBFH1BBA Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
ABB launches fully Chinese relay measurement and control deviceThe new generation IED670 series of relay protection and measurement and control devices pioneered by ABB fully complies with the IEC 61850 international standard and truly realizes the complete openness and interoperability between protection/measurement and control devices required in the field of comprehensive substation automation. This product Both hardware and software represent the highest standards in the industry. This series of products includes up to 5-side multi-terminal optical fiber phase split current differential protection, highly integrated transformer protection, and measurement and control devices that can control up to 30 electrical equipment. For the Chinese market, ABB plans to launch a fully localized IED670 series of relay protection and measurement and control devices in mid-2006, tailor-made standardized products according to the application requirements of different Chinese users, and provide fast, comprehensive and professional services.The ultimate goal is for AI to generate actual valueAlthough the popularity of artificial intelligence continues, people”s attention has gradually shifted from the surprises brought by new technologies to actual scene applications and implementation. Especially in the manufacturing field, new technologies that hope to move from the laboratory to the production workshop will inevitably undergo strict consideration by the enterprise in terms of input and output.Recently, at the 2019 Greater Bay Area Robotics and Artificial Intelligence Conference “Insights into the Development Trends and Applications of the Internet of Things Industry in the 5G and AI Era” sub-forum, well-known experts in the field of Internet of Things and AI at home and abroad and senior executives of cutting-edge technology companies expressed their opinions on the development of the Internet of Things industry . An in-depth discussion of trends and applications. At the forum, Alf Isaksson, global R&D manager of ABB Future Laboratory, gave a speech titled “Artificial Intelligence Makes Autonomous Industrial Systems Possible” and accepted an exclusive interview with Yiou New Manufacturing.Alf said in the interview that AI technology is another tool in the toolbox. Although it cannot solve all problems, it is indeed one of our most powerful tools.The only way to stay on top of the trend: adjust business models and change organizational structuresAs a company with a history of more than 130 years, ABB has always been forward-looking in its business, so it can always stay at the forefront of business competition. Going back to the 1880s, ABB”s predecessor, ASEA, started in the power industry.At the end of the 20th century, as Europe”s power production capacity became saturated, ASEA merged with another European electrical company, BBC (Brown, Boveri & Cie), to form today”s ABB (Asea Brown Boveri).In the past 30 years, ABB has gradually focused on the field of industrial production through the strategy of divesting original businesses and expanding advantageous businesses through mergers and acquisitions.ABB divested its broadcast transmission equipment, antenna and electronic tube businesses in 1993; from 1995 to 1998, it divested its railway sector whose profitability had declined; from 2019 to 2020, it will gradually divest itself of its power grid transmission business. You can get a glimpse of the transformational courage of a strong man who cut off his wrist.At the same time, ABB has used mergers and acquisitions to expand its robotics, automation and digital businesses, and has gradually become a pioneer in the field of manufacturing digitalization.Today, ABB has a team of more than 8,000 engineers and R&D laboratories located in more than ten countries and regions. This summer, the ABB Future Laboratory headed by Alf was established, located in Baden, Switzerland, Raleigh, the United States, and Beijing, China. Future laboratories will be more directly managed and funded by enterprises, focusing on disruptive technologies and innovations.
DS200PLIBG2ACA From General Electric in the United States
IS200ICIAH1ABB High performance processor module GE
IS200ERDDH1ABA From General Electric in the United States
DS200SHVMG1A I/O excitation redundant module GE
IS200VCMIH1B Gas turbine system Mark VI
IS200VCCCH1B High performance processor module GE
IS410STCIS2A I/O excitation redundant module GE
IS200VVIBH1B Gas turbine system Mark VI
IS210AEBIH1ADB Processor/Controller Mark VI System
DS3820PSCB1C1B From General Electric in the United States
DS200PCCAG7A High performance processor module GE
IS200BPIIH1A Gas turbine system Mark VI
IS215WEMAH1B High performance processor module GE
DS200TCQAG1B Gas turbine system Mark VI
IS230TDBTH6A GE power control board
IS220PPROH1A From General Electric in the United States
IS200DSPXH1D From General Electric in the United States
IS200TBCIH1B From General Electric in the United States
IS220PAOCH1A High performance processor module GE
IS200VCMIH2B GE power control board
IS200ESELH1AAA I/O excitation redundant module GE
IS200PSCDG1A GE power control board
IS215UCVEM08B High performance processor module GE
IS200ICBDH1ABB High performance processor module GE
DS200ACNAG1A Gas turbine system Mark VI
IS200TBAIH1C High performance processor module GE
IS200DSPXH1DBD Gas turbine system Mark VI
IS200ERGTH1AAA From General Electric in the United States
IS200IGPAG2AED Processor/Controller Mark VI System
IS220PAICH1A Gas turbine system Mark VI
IS420UCSCH2A GE power control board
IS420PUAAH1A I/O excitation redundant module GE
DS200TCDAG1PR5A High performance processor module GE
IS200RAPAG1A High performance processor module GE
IS200DAMDG1AAA I/O excitation redundant module GE
IS200EPSMG2ADC GE power control board
IS200HFPAG1A I/O excitation redundant module GE
IS420YDIAS1B I/O excitation redundant module GE
IS200RAPAG1A From General Electric in the United States
IS210AEAAH1B High performance processor module GE
IS210AEAAH1B Gas turbine system Mark VI
DS200SLCCG4A High performance processor module GE
DS200ADMAH1A High performance processor module GE
IS215UCVEM01A High performance processor module GE
IS210MACCH2A High performance processor module GE
IS410JPDHG1A High performance processor module GE
IS215VCMIH2BB From General Electric in the United States
IS220PDIOH1B High performance processor module GE
GDS1168-PFF-PA-NF From General Electric in the United States
IS200IGDMH1AAA Processor/Controller Mark VI System
IS200TVIBH2B Gas turbine system Mark VI
IS220PSCAH1A Gas turbine system Mark VI
IS220PPDAH1A High performance processor module GE
IS420USBH1A I/O excitation redundant module GE
IS410STCIS2A GE power control board
IS200STCIH6AED Processor/Controller Mark VI System
IS200VTURH2BAC Processor/Controller Mark VI System
IS200VRTDH1B Processor/Controller Mark VI System
IS200SRTDH2ACB GE power control board
IS215AEPCH1C Processor/Controller Mark VI System
IS220PAOCH1A Gas turbine system Mark VI
DS200DTBDG1ABB GE power control board
IS420UCSCH1B Gas turbine system Mark VI
DS200PLIBG1ACA High performance processor module GE
IS200SSBAG1A GE power control board
IS200STAOH2AAA GE power control board