Description
IS200JPDSG1ACBGE Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
We can perform simulation algorithms on Matlab.3. The role of frequency converter1. Frequency conversion energy savingThe energy saving of frequency converters is mainly reflected in the application of fans and water pumps. In order to ensure the reliability of production, various production machines have a certain margin when they are designed to be equipped with power drives. When the motor cannot operate at full load, in addition to meeting the power drive requirements, the excess torque increases the consumption of active power, resulting in a waste of electrical energy. The traditional speed adjustment method for fans, pumps and other equipment is to adjust the air supply volume and water supply volume by adjusting the opening of the baffles and valves at the inlet or outlet. The input power is large, and a large amount of energy is consumed in the interception process of the baffles and valves. middle. When using variable frequency speed regulation, if the flow requirement is reduced, the requirement can be met by reducing the speed of the pump or fan.The purpose of using a frequency converter for a motor is to regulate speed and reduce starting current. In order to produce variable voltage and frequency, the device first converts the alternating current from the power supply into direct current (DC), a process called rectification. The scientific term for a device that converts direct current (DC) into alternating current (AC) is “inverter”. Generally, an inverter converts DC power into an inverter power supply with a certain fixed frequency and voltage. The inverter with adjustable frequency and adjustable voltage is called a frequency converter. The waveform output by the frequency converter is a simulated sine wave, which is mainly used for speed regulation of three-phase asynchronous motors, also called a variable frequency speed regulator. For variable frequency inverters that are mainly used in instrumentation and testing equipment and have higher waveform requirements, the waveforms need to be sorted and can output standard sine waves, which are called variable frequency power supplies. Generally, the price of variable frequency power supply is 15-20 times that of the inverter. Since the main device in the inverter equipment that produces changing voltage or frequency is called “inverter”, the product itself is named “inverter”, that is: inverter.Frequency conversion does not save power everywhere, and there are many occasions where using frequency conversion does not necessarily save power. As an electronic circuit, the frequency converter itself also consumes power (about 3-5% of the rated power). A 1.5-horsepower air conditioner consumes 20-30W of electricity, which is equivalent to a continuous light. It is a fact that the inverter runs at power frequency and has a power-saving function. But his prerequisite is:
DS200PLIBG2ACA From General Electric in the United States
IS200ICIAH1ABB High performance processor module GE
IS200ERDDH1ABA From General Electric in the United States
DS200SHVMG1A I/O excitation redundant module GE
IS200VCMIH1B Gas turbine system Mark VI
IS200VCCCH1B High performance processor module GE
IS410STCIS2A I/O excitation redundant module GE
IS200VVIBH1B Gas turbine system Mark VI
IS210AEBIH1ADB Processor/Controller Mark VI System
DS3820PSCB1C1B From General Electric in the United States
DS200PCCAG7A High performance processor module GE
IS200BPIIH1A Gas turbine system Mark VI
IS215WEMAH1B High performance processor module GE
DS200TCQAG1B Gas turbine system Mark VI
IS230TDBTH6A GE power control board
IS220PPROH1A From General Electric in the United States
IS200DSPXH1D From General Electric in the United States
IS200TBCIH1B From General Electric in the United States
IS220PAOCH1A High performance processor module GE
IS200VCMIH2B GE power control board
IS200ESELH1AAA I/O excitation redundant module GE
IS200PSCDG1A GE power control board
IS215UCVEM08B High performance processor module GE
IS200ICBDH1ABB High performance processor module GE
DS200ACNAG1A Gas turbine system Mark VI
IS200TBAIH1C High performance processor module GE
IS200DSPXH1DBD Gas turbine system Mark VI
IS200ERGTH1AAA From General Electric in the United States
IS200IGPAG2AED Processor/Controller Mark VI System
IS220PAICH1A Gas turbine system Mark VI
IS420UCSCH2A GE power control board
IS420PUAAH1A I/O excitation redundant module GE
DS200TCDAG1PR5A High performance processor module GE
IS200RAPAG1A High performance processor module GE
IS200DAMDG1AAA I/O excitation redundant module GE
IS200EPSMG2ADC GE power control board
IS200HFPAG1A I/O excitation redundant module GE
IS420YDIAS1B I/O excitation redundant module GE
IS200RAPAG1A From General Electric in the United States
IS210AEAAH1B High performance processor module GE
IS210AEAAH1B Gas turbine system Mark VI
DS200SLCCG4A High performance processor module GE
DS200ADMAH1A High performance processor module GE
IS215UCVEM01A High performance processor module GE
IS210MACCH2A High performance processor module GE
IS410JPDHG1A High performance processor module GE
IS215VCMIH2BB From General Electric in the United States
IS220PDIOH1B High performance processor module GE
GDS1168-PFF-PA-NF From General Electric in the United States
IS200IGDMH1AAA Processor/Controller Mark VI System
IS200TVIBH2B Gas turbine system Mark VI
IS220PSCAH1A Gas turbine system Mark VI
IS220PPDAH1A High performance processor module GE
IS420USBH1A I/O excitation redundant module GE
IS410STCIS2A GE power control board
IS200STCIH6AED Processor/Controller Mark VI System
IS200VTURH2BAC Processor/Controller Mark VI System
IS200VRTDH1B Processor/Controller Mark VI System
IS200SRTDH2ACB GE power control board
IS215AEPCH1C Processor/Controller Mark VI System
IS220PAOCH1A Gas turbine system Mark VI
DS200DTBDG1ABB GE power control board
IS420UCSCH1B Gas turbine system Mark VI
DS200PLIBG1ACA High performance processor module GE
IS200SSBAG1A GE power control board
IS200STAOH2AAA GE power control board