IS200ICBDH1B GE power control board

Brand: GE

model: IS200ICBDH1B
System: Gas turbine system
Origin: United States

The GE IS200ICBDH1B turbine control module is used for various applications, including:

Electric power generation

Oil and Gas

EADS

ship

  • Email:Angela@sauldcsplc.com
  • Phone:+86 18350224834
  • WhatsApp:+8618350224834

Description

IS200ICBDH1B Product Introduction

GE IS200ICBDH1B Embedded Controller Module
 
GE IS200ICBDH1B Embedded Controller Module Product Details:
 
GE IS200ICBDH1B is an embedded controller module developed by General Electric (GE) for industrial automation and control systems.
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
 
Industrial automation: used to master and monitor various automation processes in the factory, such as production lines, machine installation,
manufacturing processes, etc.
Power industry: used for mastering and monitoring tasks in power plants and power distribution systems.
Chemical and process industries: used to monitor and grasp the production process in chemical plants, refineries, and other process industries.
Manufacturing industry: can be used to master and optimize the production process, ensuring the effectiveness of labor and product quality.
Transportation: The application in the traffic signal system, railway system, or other traffic control systems.
Construction automation: used for automation systems in construction, such as building management systems, intelligent construction control systems, etc.
Fire disposal punishment and situation control: application in the pollution fire disposal punishment plant, fire disposal punishment measures, and situation
monitoring and control system.
These are just some potential application areas, in fact, there can be more application scenarios, depending on the effectiveness and personality
of the controller module, as well as the specific needs of the customer.
 
 
General Electric has designed the processor/controller for the IS200ICBDH1B Mark VIe system. The Mark VI platform is General Electric”s Speedtronic range,
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
 
 
This IS200ICBDH1B is a single box assembly with a front panel for communication connections, two screws installed on the rear edge, and three grille holes for ventilation. The controller is designed to
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
 
IS200ICBDH1B uses the QNX operating system. It has a 667MHz Freescale 8349 processor. This board is powered by a 12 watt, 18-36 V DC power supply. Even at its maximum rated temperature, t
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Contact Us
 
Mobile phone: 18350224834
 
E-mail: sauldcsplc@outlook.com
 
WhatsApp:+86 18350224834

Design and implementation of variable frequency transmission system based on ABB hardware architectureintroductionWith the increasing development of transmission technology and the increasing demand for actual use, variable frequency transmission systems have been widely used.As a Fortune 500 company in the world, ABB is a leader in the fields of power and automation technology and has strong capabilities in control systems, high-voltage, medium-voltage and low-voltage frequency conversion technology and transmission technology. Therefore, this article mainly relies on ABB”s control, frequency conversion and transmission technology, and uses related hardware products to design and implement the frequency conversion transmission system.To truly design and implement a usable variable frequency drive system, the entire system must be fully equipped, conveniently operable and compatible with a wide range of needs, so that it can be used without changing the control method and operation. According to the actual control needs, that is, combining frequency converters with different performances and variable frequency motors with different speeds or torques to quickly build and realize a variety of control requirements.1 System design purpose and compositionThe design purpose of this system is to control ABB inverters through local and remote control methods and complete 4 independent channels of closed-loop speed control to drive different test objects to rotate.The entire control system consists of the following four main components: remote control computer, panel industrial computer (touch screen), PLC and speed-regulating frequency converter. The system design block diagram is shown in Figure 1.In order to ensure the accuracy of motor speed control, an encoder module is added. The PLC can obtain the feedback of the rotary encoder in the frequency converter through the ProfibusDP protocol. The speed control is performed through the frequency converter for internal PID closed-loop control.2 System hardware implementation2.1 Control some hardwareThe control part of the hardware mainly refers to the sum of hardware that supports operators to use the equipment directly or indirectly and complete the functions of the equipment. Its main hardware includes computer control terminal, touch screen control terminal, PLC control unit, other auxiliary circuits and measurement and control components.2.2 Transmission hardwareThe transmission hardware mainly refers to the total number of equipment that can relatively independently perform a complete transmission function. Its main hardware includes frequency converters, variable frequency motors (configured with rotary encoders as needed) and other auxiliary circuits. Among them, the selection of motors and frequency converters should be based on the principle of selecting the motor first and then selecting the frequency converter. details as follows:First, according to the tangential speed at which the object under test is to complete rotation, select the motor speed according to the following formula:Secondly, choose based on several other important basic parameters of the motor, such as system hardness, torque, weight, etc. This system uses ABB”s variable frequency motor.Finally, select an appropriate frequency converter based on the motor power. In addition, the actual situation of the object being tested must also be taken into consideration, such as whether the rotating load belongs to the heavy-load usage of the frequency converter, etc.3Software systemSystem software includes three major categories in total, namely computer control software, touch screen software and PLC software. Among them, the PLC software, as the underlying software, is responsible for the interaction with the computer control software and touch screen software on the upper side, and the interaction with the frequency converter on the lower side. Therefore, from the architecture of the entire software system, it can be defined as a host and slave computer structure.3.1 System development platformThe software system has two control methods: remote and local. The development platforms for the three major categories of software are Windows operating system, LabVIEW[4] integrated development environment, CodesysV2.3, and CP400.3.2 System software architectureThe software of the entire system is divided into three types, namely remote control software, PLC control software and local control software. Among them, the remote control software runs under the Windows operating system and is developed under the LabVIEW integrated development environment; the PLC control software is developed under the CodesysV2.3 programming environment; the local control software runs on the touch screen computer and is developed under the CP400 environment. The relationship between the three software is shown in Figure 2.

IS215VCMIH2B Processor/Controller Mark VI System
IS200TRPGH3B I/O excitation redundant module GE
IS215ACLEH1B GE power control board
IS200VCCCH1B Gas turbine system Mark VI
IS200TGENH1A Gas turbine system Mark VI
DS200SDCCG5AHD GE power control board
IS200EROCH1AD I/O excitation redundant module GE
IS420UCECH1B From General Electric in the United States
IS220PAICH1A From General Electric in the United States
IS415UCVHH1A From General Electric in the United States
IS200WETAH1ADC High performance processor module GE
DS200ACNAG1ADD From General Electric in the United States
IS200DSFCG1AEB From General Electric in the United States
IS210AEBIH1BED GE power control board
IS220PSVOH1B Processor/Controller Mark VI System
IS200VCCCH1B From General Electric in the United States
IS200EGPAG1B I/O excitation redundant module GE
IS215UCVGH1A I/O excitation redundant module GE
IS215VCMIH2C Processor/Controller Mark VI System
IS220PAISAH1A Gas turbine system Mark VI
IS215UCVFH2A GE power control board
IS210BPPBH2BMD From General Electric in the United States
IS220PDOAH1A Processor/Controller Mark VI System
IS200TDBTH6ACD Processor/Controller Mark VI System
IS200DVIBH1B I/O excitation redundant module GE
IS420UCSCS2A I/O excitation redundant module GE
IS230PCAAH1B Gas turbine system Mark VI
DS200TBCAG1AAB High performance processor module GE
IS230STCIH6A Processor/Controller Mark VI System
IS200DSPXH1B Gas turbine system Mark VI
IS215VCMIH2BE High performance processor module GE
IS215VCMIH2C I/O excitation redundant module GE
DS200TCDAH1BJE GE power control board
IS210AEBIH1A From General Electric in the United States
IS420ESWBH3A High performance processor module GE
DS200RCTBG1ABA Processor/Controller Mark VI System
IS420UCSCS2A-B GE power control board
IS220PDIOH1A GE power control board
DS200FCGDH1B High performance processor module GE
IS220PAICH1 From General Electric in the United States
IS200TRPGH1B From General Electric in the United States
IS200ACLEH1BCB GE power control board
IS200ERRRH1A From General Electric in the United States
IS420ESWBH2A GE power control board
IS230TVBAH4A Processor/Controller Mark VI System
IS200TRLYH1C I/O excitation redundant module GE
IS410TVBAS2B I/O excitation redundant module GE
DS200DCFBG1B From General Electric in the United States
IS200EXHSG3A Gas turbine system Mark VI
IS200TDBTH6ACD High performance processor module GE
IS200DSPXH2CAA Gas turbine system Mark VI
DS200VPBLG2A From General Electric in the United States
IS200TVIBH2BBB Processor/Controller Mark VI System
IS200TSVOH1BCC Processor/Controller Mark VI System
IS200VAOCH1B GE power control board
IS200EPSMG1AED From General Electric in the United States
IS200EPCTG1A GE power control board
IS200VRTDH1D GE power control board
IS215UCVEM06A GE power control board
DS200DCFBG1BGB I/O excitation redundant module GE
IS200WROBH1A Processor/Controller Mark VI System
DS200SDCCG4AFD I/O excitation redundant module GE
DS200RTBAG3AHC Processor/Controller Mark VI System
IS200AEAAH1CPR1 I/O excitation redundant module GE
IS220UCSAH1A Processor/Controller Mark VI System
IS410STAIS2A High performance processor module GE
IS420UCSCH1B GE power control board
IS200AVIFH1A GE power control board
IS200VAICH1DAA Gas turbine system Mark VI
IS200STCIH6A GE power control board
IS210AEBIH1A GE power control board
IS200ICBDH1A GE power control board