Description
IS200EGPAG1B Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
On April 25, 2017, ABB and IBM announced a strategic cooperation today. ABB”s industry-leading digital solution ABB Ability will join forces with IBM Watson IoT cognitive computing technology to create new innovations for customers in the power, industry, transportation and infrastructure fields. the value of.ABB has deep industry expertise and cross-industry digital solutions, and IBM is an expert in artificial intelligence, machine learning and different vertical industries. The cooperation between the two parties will benefit customers. ABB Ability and Watson will first cooperate in the fields of factories and smart grids to provide real-time cognitive analysis.”The strong alliance between the two parties marks a new stage in the development of industrial technology. We will not only have the interconnected systems that currently collect data, but will also use data to sense, analyze, optimize and take countermeasures in industrial operations and equipment to help industrial customers Improve uptime, speed and production.” ABB Group CEO Spiesshofer said, “ABB has installed 70 million connected devices around the world, has 70,000 running control systems and 6,000 enterprise software solutions. As a trusted leader in the industrial field, ABB has been deeply involved in industrial digitalization for more than 40 years. IBM is a leader in artificial intelligence and cognitive computing. IBM and ABB will work together to create powerful solutions for customers and seize the fourth The great opportunities presented by the sub-industrial revolution.”Groundbreaking new solutionsThis breakthrough solution, jointly developed by ABB and IBM, will provide users with a new way to address major challenges in the industrial field, such as strengthening quality control, reducing downtime, and increasing the speed and output of industrial processes. These solutions will not only have the data collection capabilities of existing connected devices, but will also cover cognitive industrial devices that use data to detect, analyze and take response measures, helping workers eliminate ineffective processes and redundant work.IBM Chairman, President and CEO Rometty said: “This important cooperation with ABB will help Watson more deeply participate in industrial applications in different fields such as manufacturing, power and transportation. In the products, equipment and systems of industrial enterprises The data generated will also significantly improve innovation, efficiency and safety. Through Watson”s extensive cognitive capabilities and the platform”s special support for the industrial sector, these huge amounts of new resources can be transformed into trusted value. We eagerly look forward to working with ABB on cooperation in this new industrial sector.”Bringing real-time cognitive analytics to the factoryFor example, ABB and IBM will use Watson artificial intelligence to help users identify substandard products through real-time product images. TheseThe images are captured by the ABB system and analyzed through IBM Watson IoT for Manufacturing. Previously, this product inspection process was completed manually, which was not only slow but also prone to errors. Through the perfect combination of Watson”s real-time cognitive analysis directly in the factory with ABB”s industrial automation technology, users can increase production line output while improving production accuracy and product consistency. The solution alerts producers to critical faults that cannot be discerned by the human eye during the assembly process of product parts, allowing quality control experts to quickly intervene. This easier problem detection will improve the quality of all products on the production line, help users avoid expensive product recalls and suffer reputational losses, and significantly improve their competitiveness.Smart grid real-time cognitive analysisABB and IBM will use Watson technology to extract historical and weather data to predict power supply patterns on the power generation side and demand side, helping power customers optimize operations and maintain smart grids, and solve the increasingly complex balance between traditional and renewable energy faced by smart grids. Sexual issues. Forecasts of temperature, light and wind speed will be used to predict electricity consumption demand, helping power customers determine optimal load management and real-time electricity prices.
IS210AEBIH3BED Processor/Controller Mark VI System
IS220UCSAH1A From General Electric in the United States
DS200TCDAH1BHD GE power control board
DS200PLIBG2ACA Gas turbine system Mark VI
IS200EBKPG1CAA High performance processor module GE
IS200STCIH6A Processor/Controller Mark VI System
IS200DSVOH2BDB From General Electric in the United States
IS200DAMAG1BBB I/O excitation redundant module GE
IS200ISBDG1A Processor/Controller Mark VI System
IS420UCSCH2A Processor/Controller Mark VI System
IS415UCVHH1A Gas turbine system Mark VI
IS2020JPDFG01 GE power control board
IS220PPRAS1A GE power control board
IS200EBPG1ACD Gas turbine system Mark VI
IS200SRTDH2ACB I/O excitation redundant module GE
IS200PSCDG1A Gas turbine system Mark VI
IS200EDEXG1A High performance processor module GE
IS420UCSBH4A Processor/Controller Mark VI System
IS220UCSAH1A I/O excitation redundant module GE
DS200QTBAG1ADC High performance processor module GE
IS420ESWBH1A Gas turbine system Mark VI
IS215VCMIH2C From General Electric in the United States
DS200TBQCG1ABB GE power control board
IS200PSCDG1ADB From General Electric in the United States
IS200SRLYH2A I/O excitation redundant module GE
IS420UCSCH1A Gas turbine system Mark VI
IS420UCSCH1A High performance processor module GE
IS220PHRAH1A High performance processor module GE
IS420UCSCH1A Processor/Controller Mark VI System
IS220UCSCH1A Gas turbine system Mark VI
IS420PPNGH1A Gas turbine system Mark VI
IS200SRTDH2A I/O excitation redundant module GE
IS220PTURH1A From General Electric in the United States
IS420PUAAH1A From General Electric in the United States
DS200SLCCG3A From General Electric in the United States
IS220PDIAH1A High performance processor module GE
IS200WETAH1AEC From General Electric in the United States
DS200NATOG2A Gas turbine system Mark VI
IS200STTCH2A High performance processor module GE
IS215PMVDH1A From General Electric in the United States
IS220PPDAH1A From General Electric in the United States
IS410TRLYS1F GE power control board
IS2020ISUCG GE power control board
IS215UCVEH2AE Gas turbine system Mark VI
DS200CTBAG1ACC I/O excitation redundant module GE
IS200TBCIH2CAA I/O excitation redundant module GE
IS2020LNPSG3A GE power control board
IS420ESWAH2A Processor/Controller Mark VI System
DS200TCEBG1ACD From General Electric in the United States
IS210AEACH1A Gas turbine system Mark VI
DS200DMCBG1AKG Processor/Controller Mark VI System
IS215UCVFH2BB From General Electric in the United States
IS420ESWBH2A Gas turbine system Mark VI
IS220PTURH1A Gas turbine system Mark VI
DS200TCPDG2B High performance processor module GE
IS400WROFH1A GE power control board
DS200DSPCH1ADA High performance processor module GE
DS3800HMPJ1B1D From General Electric in the United States
IS200TVBAH2ACC From General Electric in the United States
IS420YUAAS1A Gas turbine system Mark VI
IS215PMVPH1A GE power control board
IS200DSVOH2B High performance processor module GE
IS200RCSAG1 Gas turbine system Mark VI
IS200HFPAG1ADC GE power control board
IS200WROBH1A GE power control board
IS200VATFG1A From General Electric in the United States
DS200TCTGG1AFF I/O excitation redundant module GE
IS230SRTDH2A Processor/Controller Mark VI System
IS210AEBIH3BEC From General Electric in the United States
IS210SAMBH2AA GE power control board
IS210AEBIH3BEC Gas turbine system Mark VI
DS200EXPSG1ACB I/O excitation redundant module GE
DS200GLAAG1ACC From General Electric in the United States
DS215KLDBG1AZZ03A From General Electric in the United States
IS220PDIAH1BE GE power control board
IS200TPROH1C I/O excitation redundant module GE
IS220PTURH1B I/O excitation redundant module GE
DS215SDCCG1AZZ01A Processor/Controller Mark VI System
IS200IVFBG1AAA High performance processor module GE
IS200EROCH1A I/O excitation redundant module GE
DS200TCDAG1BDB From General Electric in the United States
IS215VPROH1A I/O excitation redundant module GE
IS200ICBDH1ACB From General Electric in the United States
IS200BPIBG1A Gas turbine system Mark VI
IS215UCVFH2AB From General Electric in the United States
DS200FCSAG1A I/O excitation redundant module GE
IS200DAMEG1ABA From General Electric in the United States
IS200VSVOH1BDC GE power control board
IS200TVBAH2A I/O excitation redundant module GE
DS200SHCBG1A High performance processor module GE
IS420ESWAH3 GE power control board
IS215WEPAH2BB GE power control board
IS200DSPXH1DBD GE power control board
IS215UCVEM09B From General Electric in the United States
DS200TCTGG1AFF Processor/Controller Mark VI System