Description
IS200DSPXH2D Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
Although it was established only a few months ago, ABB Future Lab has already cooperated with Huawei to complete the AI training of garbage sorting robots in two months. This robot uses AI technology based on Huawei chips and uses industrial cameras to sort objects.Obviously, adjusting the business model and organizational structure is an important reason why ABB has always been at the forefront of the industry.From technology iteration to application implementation, ABB aims to provide complete solutionsAs a pioneer in manufacturing automation and digitalization, ABB”s products in the automation field are constantly improving, and its application industries are also expanding.In Alf”s view, the structure and construction of automation have not changed much in the past 30 years. From signal collection and information transmission to work scenarios or operational interfaces, the flow of information in automated systems has basically not changed.But the arrival of 5G may change the way information is transmitted between devices. 5G’s characteristics such as large capacity, high reliability and low latency make it possible to realize independent connections between devices. If real-time mainline connection can be achieved and installed on the cloud or platform, it will be a more disruptive application.5G will not only change the way ABB operates, but is also likely to introduce digitalization into the industry, including digital operation and maintenance. ABB has launched an industrial Internet solution called ABB Ability, which firstly provides a platform, and secondly, it includes all ABB”s digital cloud products, such as equipment industrial solutions and transportation solutions.In addition to digitization, another focus of Alf is the autonomy of machines. He took the autonomous management of autonomous driving and warehousing as examples to think about the development process of machine autonomy – from human operation to machine operation, and ultimately to autonomous implementation and testing without the need for humans at all.For ABB, in addition to popular autonomous driving technology, industrial production scenarios also have strong demand for the autonomy of machinery and equipment, such as autonomous docking of ships and the mining industry. In some industrial scenarios represented by mining, toxic gases and substances in the working environment are harmful to the human body, so equipment is required to have the ability to enter and leave the mine independently. ABB first needs to study the value proposition of these businesses, discover potential applications, and then discover in which fields it can be applied.A technology close to autonomy is artificial intelligence. Since its birth in the 1960s, it has been attracting people”s attention, and there have been endless discussions about “robot replacement”. After decades of development, related technologies have gradually matured, and more and more AI technologies have begun to be discussed in the application field. The products and technologies of leading manufacturers such as ABB have attracted much attention.ABB has been applying AI technology to its products for 20 years, but its current mature products are mainly diagnostic applications based on traditional statistics. Alf introduced to Yiou New Manufacturing that as part of the diagnostic solution, this technology is mainly used to implement condition monitoring functions. More mature applications are reflected in the automated management of equipment, such as the electronic management of ships.Machine learning is another promising AI technology. At the World Artificial Intelligence Conference at the end of August this year, ABB demonstrated a coffee workbench composed of a two-arm collaborative robot Yu Mi. Through guided programming of YuMi, the collaborative robot can learn and remember the barista”s movements to complete the complete process of making coffee, latte art and delivering it to the audience.In actual implementation scenarios, this technology is used to transform terminals carrying containers. By simulating the location and status of box handling, the collected data is used to train the AI, allowing the AI to know the location of the container, thereby achieving automation.From automation, digitalization, autonomy and artificial intelligence technologies, ABB is not a blind pursuer of emerging technology concepts. It pays more attention to customer needs and actual implementation, and achieves better solutions through different product combinations.There are two major difficulties in balancing R&D and business and implementing solutions.As a commercial company, ABB still needs to consider the balance between R&D investment and revenue. In Alf”s view, they do not have unlimited R&D resources, so they need to focus on finding a balance between improving original product functions and developing new functions. In terms of technology research and development, we also need to try to focus on projects that can bring the greatest value to the company.Regarding the specific implementation of digital solutions, Alf believes that there are currently two main difficulties.The first difficulty is that ABB cannot just develop a general solution, because different industry segments have different needs, so it must design solutions that suit their different needs. ABB not only needs to master knowledge in different fields and different applications, but also needs to consider the availability of data.The second difficulty lies in the use of data, because AI requires a large amount of data training. On the one hand, ABB needs to encourage customers to provide data for training models; on the other hand, ABB also needs to ensure customers the privacy, ownership and security of their data.”Industrial artificial intelligence needs to be combined with models and data. But the most important thing is that we must provide value to customers through the use of AI, otherwise we will just apply technology for the sake of applying technology.” Alf concluded.
IS215UCVFH2AB Processor/Controller Mark VI System
DS200FCSAG1ACB Processor/Controller Mark VI System
IS200EXCSG1A GE power control board
IS200TDBSH2A I/O excitation redundant module GE
IS420YVIBS1B Processor/Controller Mark VI System
IS200HSLAH2A Processor/Controller Mark VI System
IS215UCVFH2AB Gas turbine system Mark VI
IS210AEPSG1B GE power control board
DS200SPCBG1ADC High performance processor module GE
IS210DRTDH1AA Gas turbine system Mark VI
IS420ESWBH3AX GE power control board
IS230SNAIH4A I/O excitation redundant module GE
IS200VTURH1BAC From General Electric in the United States
IS420ESWBH3A From General Electric in the United States
DS2020FEXAG4 I/O excitation redundant module GE
IS200ACLEH1ABA GE power control board
IS200BICIH1ADB Gas turbine system Mark VI
IS200PMCIH1AAA6BA00 GE power control board
IS200IGPAG2A I/O excitation redundant module GE
DS200RTBAG1AHC Processor/Controller Mark VI System
DS200PCCAG9ACB From General Electric in the United States
DS200RCIAG1AAA GE power control board
IS200TBCIH2C GE power control board
DS3800XPEX1B1A I/O excitation redundant module GE
IS215UCCAM03A GE power control board
DS200PCCAG6A Gas turbine system Mark VI
IS410JPDDG2A From General Electric in the United States
IS220PDIOH1A Gas turbine system Mark VI
DS200ADMAH1AAC Gas turbine system Mark VI
IS200EHPAG1B From General Electric in the United States
IS200AEBMG1AFB GE power control board
DS200VPBLG1AEE From General Electric in the United States
IS200JPDDG1AAA I/O excitation redundant module GE
IS200EXHSG4A Gas turbine system Mark VI
DS200DMCAG1AJD I/O excitation redundant module GE
DS200PCCAG6A Processor/Controller Mark VI System
IS420PSCAH1B Gas turbine system Mark VI
IS200DTAOH1ABA Gas turbine system Mark VI
IS200BPVCG1B Gas turbine system Mark VI
IS200EDCFG1A I/O excitation redundant module GE
DS200DTBAG1AAA Gas turbine system Mark VI
DS215TCQAG1BZZ01A Gas turbine system Mark VI
DS200SHCAG1B From General Electric in the United States
IS420ESWAH5A From General Electric in the United States
IS200TREGH1BDB I/O excitation redundant module GE
IS200ERRRH1A Processor/Controller Mark VI System
IS200VSCAH2A From General Electric in the United States
IS200TBAIH1B Processor/Controller Mark VI System
IS200IHG1A Gas turbine system Mark VI
IS200ADIIH1AAA Gas turbine system Mark VI
DS200TCQCG1BLG I/O excitation redundant module GE
IS215VCMIH2CA Gas turbine system Mark VI
IS200IGDMH1B Gas turbine system Mark VI
DS200DTBDG1ABB I/O excitation redundant module GE
IS200TTPWH1A Gas turbine system Mark VI
IS200TBAIH1C From General Electric in the United States
IS200VPROH2B I/O excitation redundant module GE
IS220PAISAH1A Processor/Controller Mark VI System
IS220PDIIH1B From General Electric in the United States
IS220PPDAH1A Gas turbine system Mark VI
IS200JGNDG1A High performance processor module GE
IS200VAICH1DAB I/O excitation redundant module GE
DS200GGXCG1A I/O excitation redundant module GE
IS200TBTCH1CBB I/O excitation redundant module GE
IS220PTURH1A I/O excitation redundant module GE
IS230STTCH2A I/O excitation redundant module GE
DS200DTBDG1 Gas turbine system Mark VI
IS200PTURH1B Gas turbine system Mark VI
IS215VCMIH2B High performance processor module GE
DS3820LT4AICIA Gas turbine system Mark VI
IS215PMVPH1A Processor/Controller Mark VI System
IS200DSPXH2DBD From General Electric in the United States
DS200SLCCG3ACC From General Electric in the United States
IS200PTURH1B High performance processor module GE
GE DS200EXPSG1A Processor/Controller Mark VI System
IS200ERDDH1 High performance processor module GE
IS200TVIBH2BBB GE power control board
DS200TCQAG1A GE power control board
IS210BPPBH2BMD Gas turbine system Mark VI
IS200TDBTH6A Processor/Controller Mark VI System
IS200EPBPG1ACD Processor/Controller Mark VI System
DS200DSFBG1A From General Electric in the United States
DS200PCCAG10A Gas turbine system Mark VI
DS200FSAAG2ABA I/O excitation redundant module GE
IS210AEBIH1ADC Gas turbine system Mark VI
IS220PSVOH1A From General Electric in the United States
DS200ADPBG1A From General Electric in the United States
DS200TCPDG1BEC I/O excitation redundant module GE
DS200TCDAH1B Gas turbine system Mark VI
IS200WNPSH1ABA Gas turbine system Mark VI
IS420UCSBS1A Gas turbine system Mark VI
IS420ESWBH2A From General Electric in the United States
IS200ERSCG1A I/O excitation redundant module GE
IS200ESELH1A GE power control board
DS200TCRAG1A GE power control board