Description
DS3800NHVK1A1A Product Introduction
The specific application scope of the product
will depend on the needs of system integration and industrial application, but generally speaking, this type of embedded controller module can be applied to the following categories:
manufacturing processes, etc.
monitoring and control system.
of the controller module, as well as the specific needs of the customer.
designed to manage gas or steam turbines.
It has a CIMPLICITY graphical interface and an HMI with software suitable for running heavy-duty turbines.
be installed at the bottom of the cabinet. For a small setup that is easy to serve a triple redundant system, up to three components can be installed side by side.
he board can operate within a temperature range of 0 to 65 degrees Celsius without the need for a fan for cooling. NFPA Class 1. This board can be used for two applications.
“This partnership is exciting. By becoming the center for ABB robotics to enter the medical field, Texas Medical Center will continue to advance innovative collaborations with cutting-edge industry partners.” said Bill McKeon, President and CEO of Texas Medical Center. Operating a medical city in a city with an average of 10 million patients per year must prioritize efficiency and precision and develop processes that are easily replicable. By partnering with ABB to leverage first-of-its-kind R&D facilities, Texas The Medical Center is committed to making this happen.””We are proud to work with world-leading partners to develop collaborative robotic systems for the hospital of the future and test them in real laboratories to ensure value for medical professionals. At the same time, we will drive innovation, To change the way medical laboratories around the world operate.” An Shiming said, “A key element of ABB”s long-term development strategy is to continue to invest and innovate in the field of service robots and introduce our automation expertise into new areas such as healthcare. And continue to expand markets based on business in the automotive and electronics industries.”1 OverviewAmong many bus standards, various buses are called standards. However, in industries or fields where market competition cannot be divided, various buses penetrate each other. For example, DeviceNet is widely used in the automotive, material handling and manufacturing processing industries, but in Europe, the Profibus standard is also a strong competitor in these fields and occupies an absolute share. In addition, the Profibus standard is also widely used in some specific industries, such as the application of Profibus DP in automobile factories. However, a very interesting phenomenon is that the German CAN open bus itself is also used in the automotive industry. However, no matter how you look at it, the entire market can basically be divided into two categories: process industry and manufacturing industry.As industrial enterprises continue to invest in achieving faster and more efficient production and operation, the number of intelligent devices hanging on these different buses is increasing rapidly. The application of buses can indeed bring vitality and powerful business processing capabilities to end-user enterprises, but it also brings a problem to intelligent device suppliers: they must design different bus products based on numerous buses to meet the needs of various industries. There is a need for a bus; but the data interfaces of the products are all hardware-based. It is not advisable in terms of manufacturing cost to design a product with multiple types of hardware. In addition, control wiring in fieldbus is a time-consuming task and is not easy to succeed in the installation project. This complexity of work is obviously contrary to today”s trend of easier equipment operation. System integrators look forward to a plug-and-play solution that eliminates the need to read through thick product specification sheets provided by suppliers. This is actually a demand for flexibility and simplification of industrial communications. Therefore, ABB designs and produces a product (FieldBusPlug-FBP) that can easily and quickly connect to any bus system to simplify the entire fieldbus, as shown in Figure 1. In fact, FBP is a bus adapter .Figure 1 Fieldbus Adapter (FBP)2. Functions of FBP systemThe FBP system can connect switchgear and other similar elements, such as motor protection and control equipment to sensors , in a simple and effective way with the usual automation systems ( PLCs ) via a bus adapter of any protocol. wait. These switching devices are independent of the bus used. Through selected bus cables (FBP cables), connections to various bus adapters can be established.ABB FBP bus adapter can support five bus adapters: Profibus-DP, CANopen, Modbus-RTU, DeviceNet and AS-i. The appearance and connection methods of these five bus adapters are the same. It provides convenience for unified use and selection . As shown in Figure 2, the DeviceNet bus adapter is selected for communication.Figure 2 Connection diagram of multi-substation equipment and PLC system3. Characteristics of FBP systemToday”s automation applications not only require intelligent products, but also need to be able to communicate with each other to implement network functions, and the bus is undoubtedly the communication method chosen by many current automation equipment. When you walk into any manufacturing plant , process company, or energy company, you will easily find hundreds of actuators and sensors communicating with their controllers through a bus.3.1 Simple and flexible bus systemOne device is suitable for all bus types. Every device and every functional module in the product line contains a neutral bus adapter interface. With selected bus adapters and cable glands and pre-connected cables, it is very easy to establish reliable and flexible communication and connections, as shown in Figure 3.
IS200VPROH2B Gas turbine system Mark VI
IS200EPSMG1ABB Gas turbine system Mark VI
IS2020ISUCG Gas turbine system Mark VI
IS215VCMIH2BZZ01A GE power control board
IS420PUAAH1AD Gas turbine system Mark VI
DS200QTBAG1ACB Gas turbine system Mark VI
DS3800HRCA1D1B Processor/Controller Mark VI System
IS410STCIS6A Processor/Controller Mark VI System
IS210SCLSH1A High performance processor module GE
IS200DTURH1ABA High performance processor module GE
IS200TRPAS1A Gas turbine system Mark VI
IS420YDOAS1B From General Electric in the United States
DS200DTBDG1 Processor/Controller Mark VI System
IS220PRTDH1A Processor/Controller Mark VI System
IS215PCMIH1A Processor/Controller Mark VI System
IS420ESWAH3A High performance processor module GE
IS210RERCH1RBB High performance processor module GE
DS200TBQBG1ACB I/O excitation redundant module GE
IS220YDOAS1AJ From General Electric in the United States
IS215UCVEH2A High performance processor module GE
DS200DMCBG1AJG From General Electric in the United States
IS200VAICH1C Gas turbine system Mark VI
DS200ADMAH1A Gas turbine system Mark VI
DS200DCFBG1BNC From General Electric in the United States
IS200HFPAG1 From General Electric in the United States
DS200TBCBG1AAA Gas turbine system Mark VI
IS215VCMIH2CA I/O excitation redundant module GE
DS200PLIBG1ACA From General Electric in the United States
IS200EPDMG1B Gas turbine system Mark VI
IS200ECTBG1ADE High performance processor module GE
IS430SNUAH1AC High performance processor module GE
DS200TCDAH1BHD Gas turbine system Mark VI
DS200TBQAG1ABB I/O excitation redundant module GE
IS200TSVOH1BBB High performance processor module GE
IS220PTURH1BF From General Electric in the United States
IS220YDOAS1AJ GE power control board
DS200TCPSG1A Processor/Controller Mark VI System
IS200EPDMG1ABA High performance processor module GE
IS200BPIHH1AAA Processor/Controller Mark VI System
IS215VPROH1B Processor/Controller Mark VI System
DS200PTCTG2BAA High performance processor module GE
IS415UCVGH1A I/O excitation redundant module GE
IS200TBCIH2B GE power control board
DS200TCDAG1B Gas turbine system Mark VI
IS200ICBDH1BAA From General Electric in the United States
IS420YDOAS1B GE power control board
IS200TVIBH2B From General Electric in the United States
IS215UCVEH2AF From General Electric in the United States
IS215PCMIH1A GE power control board
IS210BPPBH2CAA I/O excitation redundant module GE
IS220PPRFH1B From General Electric in the United States
DS200FCGDH1B GE power control board
IS200IVFBG1AAA From General Electric in the United States
IS210DRTDH1A High performance processor module GE
IS220PHRAH1BD Gas turbine system Mark VI
IS200DAMCG1A GE power control board
IS200ECTBG1A GE power control board
IS420ESWAH1A Processor/Controller Mark VI System
DS200TCCBG3BDC Processor/Controller Mark VI System
IS200TDBTH6ABC Processor/Controller Mark VI System
IS200VCRCH1B GE power control board
IS230SNIDH1A From General Electric in the United States
IS200BICRH1A From General Electric in the United States
DS200RTBAG1AHC From General Electric in the United States
IS200DSPXH2DBD Gas turbine system Mark VI
IS410STCIS2A Gas turbine system Mark VI
DS200TBQCG1A I/O excitation redundant module GE
IS200TSVCH2AED I/O excitation redundant module GE
IS200EPDMG1B High performance processor module GE
DS200DCFBG1B Gas turbine system Mark VI
IS200VCRCH1BBB Gas turbine system Mark VI
DS200TCQAG1AFD I/O excitation redundant module GE
DS200ITXDG1ABA High performance processor module GE
IS210AEBIH3BED GE power control board
IS210AEAAH1B Processor/Controller Mark VI System
IS200VTURH2BAC From General Electric in the United States
IS420ESWBH3AX Gas turbine system Mark VI
IS200ERRBG1ABA GE power control board
IS420UCSBH4A From General Electric in the United States
DS215KLDCG1AZZ03A Processor/Controller Mark VI System
IS200PRTDH1A I/O excitation redundant module GE
DS200PTBAG1BAA From General Electric in the United States
IS2020RKPSG2A High performance processor module GE
IS200EGPAG1A I/O excitation redundant module GE
IS200STAOH2AAA From General Electric in the United States
IS200DSVOH1ABA I/O excitation redundant module GE
IS200TBCIH2C I/O excitation redundant module GE
DS200DTBCG1AAA Gas turbine system Mark VI
IS220PDIAH1B From General Electric in the United States
IS210AEDBH4AGD GE power control board
DS200TCEBG1ACE Gas turbine system Mark VI