5460-837 Controller debugger generator WOODWARD

  • Email:sauldcsplc@outlook.com
  • Phone:+86 18350224834
  • WhatsApp:+8618350224834

Description


5460-837 Controller debugger generator WOODWARD

5460-837 Product Introduction

 
5460-837 Details:
 
 
The WOODWARD 5460-837 speed controller has a series of significant product features that make it an ideal choice for engine or generator speed control in industrial applications. The following are its main characteristics:
 
Wide application range: This speed controller can be used in diesel engines, gas engines, steam turbines, or gas turbines, with a wide range of applicability.
Flexible signal input: This controller can set the speed or load of the device based on computer control signals of 4-20mA or 1-5 Vdc, providing users with multiple options to meet different control needs.
Multiple working modes: This controller has two working modes: zero difference adjustment and differential adjustment.
Non differential regulation is mainly used for constant speed control and is suitable for single machine operation or multiple prime movers working together in an isolated power grid. Differential regulation provides more control flexibility.
Highly integrated: This speed controller can be used in conjunction with a range of Woodward devices, such as power automatic transferors, input-output controllers, generator load controllers, etc., to achieve more comprehensive system control.
Rich additional functions: In addition to basic speed or load control functions, the controller also has functions such as synchronous or deceleration control, high and low speed adjustment, and fuel limit for override start,
further enhancing its performance and application range.
High precision output signal: The output signal provided by the controller is proportional to the fuel setting required to achieve the desired speed/load, ensuring precise control.
Durable and sturdy: The design takes into account the complexity of industrial environments, allowing the controller to operate stably under various harsh conditions.
In summary, the WOODWARD 5460-837 speed controller plays an important role in industrial applications due to its wide application range, flexible signal input, multiple working modes, high integration,
rich additional functions, and high-precision output signals. Whether it is in the fields of generator sets, compressors, pump stations, or ships and locomotives, it can effectively ensure the stable operation of equipment within the set range.

5460-837 is manufactured by Woodward in the company”s easyYgen 3000XT series. The XT series has some updated features on the older 3000 series. Some new features include plug-in replacement,
power measurement level 1, editable screen, multi interface toolkit connection, etc. All details can be found in Woodward easyYgen manual 37582A
This model is the 3200XT-P1 (Package 1) version. A significant difference between the 5460-837 and similar 3200XT-P1-LT models is their operating temperature range.
The rated operating temperature range of this model is -20 to 70 ° C; the rated temperature range of the LT model is -40 to 70 ° C, suitable for outdoor use.
5460-837 is equipped with a monitor (not available on the 3100 model) and is designed for front panel installation.
The toolkit software used for controlling the generator set has multilingual functionality. English, French, German, and Japanese are just a few of the fourteen supported languages.
The built-in HMI has a color LCD and soft keys (now with dedicated buttons) for direct control of the 5460-837 device. Multi level password protection can prevent unauthorized changes.
The easyYgen 3000XT model 5460-837 has three freely configurable PID controllers. It provides input and output control (kW and kvar), as well as MCB and GCB synchronization (sliding/phase matching).
The generator set has four operating modes and the option to configure a manual circuit breaker control device.

How to use 5460-837?
What is 5460-837  used for?
5460-837 Customs Code

Contact Us
 
Mobile phone: 18350224834
 
E-mail: sauldcsplc@outlook.com
 
WhatsApp:+86 18350224834

Implementation of communication between ABC industrial robot and PLC based on DeviceNet fieldbus technologyintroductionIn modern production systems, industrial robots and PLCs need to communicate and collaborate to complete production tasks. That is, the industrial robots output signals to the PLC, allowing the PLC to control related equipment to drive the robot”s front-end tools. This article mainly analyzes the communication problems between ABB industrial robots and PLC based on DeviceNet fieldbus technology. DeviceNet is a common network communication method in the field of automation. ABB industrial robots establish a network to communicate with Siemens PLC based on the DeviceNet network.1Configure DSQC652There are mainly 5 types of standard I/0 boards commonly used in ABB industrial robots [2]. Except for the different addresses assigned to them during setup, their configuration methods are basically the same. This article mainly analyzes the ABB standard I/0 board DS0C652, which mainly builds communication modules based on the DeviceNet network. The DS0C652 board has a distributed I/O module with 16 digital input and 16 digital output interfaces. The board is installed in the ABB industrial robot control cabinet. First, define the specific operation steps of the DS0C652 board, enter the teach pendant control panel, then enter the configuration menu (Figure 1), select the DeviceNetDevice menu, and add a template to enter Figure 2. ABB standard I/0 board is hung on the DeviceNet network, so the address of the module in the network must be set. The jumpers 6 to 12 of terminal x5 are used to determine the address of the module. The available address range is 10 to 63. Modify the parameters in the template parameters to complete the DS0C652 board settings. Click the drop-down menu to select the “Use value from template” row, select “DS0C65224VDCI/0Device”, and then the parameters that need to be set include the address of the I/0 board in the bus.Figure 1 Configuring DSQC6522Configure signals and parametersAfter completing the DS0C652 board setting, the I/0 signal setting will be performed. Setting the I/0 signal is the basis for establishing communication with the PLC. The PLC communicates and transmits data with the ABB industrial robot through the I/0 signal and the DS0C652 board. As shown in Figure 3, in the signal configuration interface, there are many default I/0 points after the system is established. Modification is not allowed. Click “Add” to add signals. When setting input and output signals, their address range is 0~15. First, enter the signal menu in the configuration options to set the input and output types, and modify the corresponding parameters. After completing the settings, the computer prompts that you need to restart the settings. If there are multiple signals that need to be defined and the waiting time is long after restarting multiple times, you can click “Cancel” and wait for all signals to be defined before clicking the “Yes” button to restart. After the signal settings are completed, click to select “Input and Output” in the ABB menu to check whether all signals have been set.Figure 2 Configure DSQC652 parametersFigure 3 Signal parameter settingsDuring the signal establishment process, attention should be paid to the DSoC652 port and PLC port addresses used, and the corresponding address table should be established, as shown in Table 1. The robot interacts with the PLC through I/O signals. During the setting process, there must be no errors in the port and address number of the PLC connected to the DSoC652. If the address is set incorrectly, the communication between the robot and the PLC will not work properly.The entire robot teaching pendant setting process is shown in Figure 4.

5417-028 From Woodward, USA
5501-432 WOODWARD Speed Sensor Full Series
5462-236 Controller debugger generator WOODWARD
5464-725 Controller debugger generator WOODWARD
3005-510 Generator Parts Speed Controller 2301A Speed
8200-015 WOODWARD generator set speed control board
5464-843 WOODWARD generator set speed control board
9907-624 WOODWARD 2301A Speed Control Controller
5466-419 WOODWARD generator set speed control board
5417-041 Generator Parts Speed Controller 2301A Speed
5462-292 WOODWARD Speed Sensor Full Series
8237-1245 WOODWARD 2301A Speed Control Controller
5421-112 WOODWARD generator set speed control board
8516-010 WOODWARD generator set speed control board
8915-948 WOODWARD 2301A Speed Control Controller
5462-966 Controller debugger generator WOODWARD
8440-2174 From Woodward, USA
8446-1068 WOODWARD generator set speed control board
5466-063 WOODWARD generator set speed control board
5464-843 Controller debugger generator WOODWARD
3462-757 WOODWARD 2301A Speed Control Controller
5460-840 Controller debugger generator WOODWARD
8444-1067 WOODWARD generator set speed control board
5464-538 WOODWARD generator set speed control board
5464-017 Controller debugger generator WOODWARD
8915-385 WOODWARD generator set speed control board
EGB-10P WOODWARD Speed Sensor Full Series
5462-117 Controller debugger generator WOODWARD
9907-994 Controller debugger generator WOODWARD
8272-684 Controller debugger generator WOODWARD
8239-002 WOODWARD 2301A Speed Control Controller
5464-332 WOODWARD Speed Sensor Full Series
9907-147 Generator Parts Speed Controller 2301A Speed
8440-1546 Controller debugger generator WOODWARD